From the Discovery of the Higgs Boson to the Search for Dark Matter -New results from the LHC-

Karl Jakobs Physikalisches Institut Universität Freiburg / Germany

- LHC and Data Taking, First look at the data at highest energies
- The profile of the Higgs Boson
 - What do we know today about the Higgs boson?
- Search for Physics Beyond the Standard Model (Focus on Dark Matter)
- Future: where do we go from here

The Standard Model of Particle Physics

- (i) Constituents of matter: quarks and leptons (spin-1/2 fermions)
- (ii) Four fundamental forces: described by quantum field theories (except gravitation)
 → massless spin-1 gauge bosons
- (iii) The Higgs field:

 \rightarrow scalar field, spin-0 Higgs boson

The Brout-Englert-Higgs Mechanism

F. Englert and R. Brout. Phys. Rev. Lett. 13 (1964) 321;
P.W. Higgs, Phys. Lett. 12 (1964) 132, Phys. Rev. Lett. 13 (1964) 508;
G.S. Guralnik, C.R. Hagen, and T.W.B. Kibble. Phys. Rev. Lett. 13 (1964) 585.

The Brout-Englert-Higgs Mechanism

Complex scalar (spin 0) field ϕ with potential:

$$V(\phi) = \mu^2(\phi * \phi) + \lambda(\phi * \phi)^2$$

For $\lambda > 0$, $\mu^2 < 0$: "Spontaneous Symmetry Breaking"

- \rightarrow Omnipresent Higgs field: vacuum expectation value v \approx 246 GeV
- \rightarrow Higgs Boson (mass not predicted, except m_H < ~1000 GeV)
- \rightarrow Particles acquire mass through couplings to the Higgs field

The Brout-Englert-Higgs Mechanism

Complex scalar (spin 0) field ϕ with potential:

$$V(\phi) = \mu^2(\phi * \phi) + \lambda(\phi * \phi)^2$$

For $\lambda > 0$, $\mu^2 < 0$: "Spontaneous Symmetry Breaking"

- Couplings proportional to mass
- Higgs boson decays preferentially into the heaviest accessible particles

The Open Questions

Key questions of particle physics

Dark energy

71.5%

Dark matter

24.0%

Gas

4.0% Stars

1. Mass

What is the origin of mass? A Higgs particle seems to exist ! What is its profile? Is it the Standard Model Higgs bosc

2. Unification

- Can the interactions be unified?
- Are there new types of matter,
 e.g. supersymmetric particles ?
 Are they responsible for the Dark Matter in the universe?

3. Flavour

- Why are there three generations of particles?
- What is the origin of the matter-antimatter asymmetry (Origin of CP violation)

Data taking at the LHC

Until end of 2012:

> 10¹⁵ Proton-proton collisions
 ~ 10¹⁰ collisions recorded

 $25.10^6 \text{ Z} \rightarrow \mu\mu$ decays registered

- Data taking extremely successful (beyond all expectations) Accelerator: beam intensity so high, that during one bunch crossing more than 20 proton-proton interactions take place
- Experiments: High efficiency for recording the collision data: ~93.5%
 Functioning detector channel >99%

$Z \rightarrow \mu^+ \mu^-$ with 20 reconstructed pp vertices

High p_T jet events at the LHC

Event display that shows the highest-mass central dijet event collected during 2010, where the two leading jets have an invariant mass of 3.1 TeV. The two leading jets have (p_T , y) of (1.3 TeV, -0.68) and (1.2 TeV, 0.64), respectively. The missing E_T in the event is 46 GeV. From <u>ATLAS-CONF-2011-047</u>.

Double differential jet production cross sections, as a function of p_T and rapidity y (full 2015 data set, $\sqrt{s} = 13$ TeV)

Leading order

Also at the highest energies explored so far, the data are well described by NLO perturbative QCD calculations (NLOJet++)

In addition to QCD test:

Sensitivity to New Physics

- Di-jet mass spectrum provides large sensitivity to new physics
 - e.g. resonances decaying into qq, excited quarks q*,
- Search for resonant structures in the di-jet invariant mass spectrum

No evidence for resonant structures:

→ Excited quarks with masses $m_{q^*} < 5.6$ TeV can be excluded

(95% C.L.)

(For comparison: pre-LHC m_{q^*} limit was at 0.87 TeV, from the Tevatron)

Standard Model processes at the LHC

Summary of important Standard Model cross sections

 $\frac{\sum}{7} \frac{\rho p \rightarrow t \overline{t}}{P^{2}}$ 7 TeV, 4.6 fb⁻¹, Eur. Phys. J. C 74:3109 (2014) 8 TeV, 20.3 fb⁻¹, Eur. Phys. J. C 74:3109 (2014) 13 TeV, 3.2 fb⁻¹, arXiv:1606.02699

pp → tq
 7 TeV, 4.6 fb⁻¹, PRD 90, 112006 (2014)
 8 TeV, 20.3 fb⁻¹, ATLAS-CONF-2014-007

13 TeV, 3.2 fb⁻¹, ATLAS-CONF-2015-079

 $\sum_{7} pp \rightarrow WW$ 7 TeV, 4.6 fb⁻¹, PRD 87, 112001 (2013) 8 TeV, 20.3 fb⁻¹, arXiv:1608.03086 13 TeV, 3.2 fb⁻¹, ATLAS-CONF-2016-090

$\overline{\nabla} pp \rightarrow WZ$

7 TeV, 4.6 fb⁻¹, Eur. Phys. J. C (2012) 72:2173 8 TeV, 20.3 fb⁻¹, PRD 93, 092004 (2016) 13 TeV, 3.2 fb⁻¹, arXiv:1606.04017

 $\[\hline pp → H \]$ 7 TeV, 4.5 fb⁻¹, Eur. Phys. J. C76 (2016) 6 8 TeV, 20.3 fb⁻¹, Eur. Phys. J. C76 (2016) 6 13 TeV, 13.3 fb⁻¹, ATLAS-CONF-2016-081 \]

 $\sum_{7 \text{ TeV}, 4.6 \text{ fb}^{-1}, \text{ JHEP 03, 128 (2013)}} pp \rightarrow ZZ$ 7 TeV, 4.6 fb⁻¹, JHEP 03, 128 (2013) 8 TeV, 20.3 fb⁻¹, ATLAS-CONF-2013-020 13 TeV, 3.2 fb⁻¹, PRL 116, 101801 (2016)

Status of Higgs Boson measurements

Expected number of decays in data: $m_{H} = 125 \text{ GeV}$

- ~ 950 H → γγ
- $\sim \qquad 60 \text{ H} \rightarrow \text{ZZ} \rightarrow 4 \text{ l}$
- $\sim 9000 \text{ H} \rightarrow \text{WW} \rightarrow \ell_{\text{V}} \ell_{\text{V}}$

Higgs Boson Production

*) LHC Higgs cross-section working group Large theory effort

Meanwhile the NNNLO = N³LO calculation for the gluon-fusion process exists; B. Anastasiou et al. (2015) \rightarrow LHC = Long and Hard Calculations

Higgs Boson Decays

Useful decays at a hadron collider:

- Final states with leptons via WW and ZZ decays
- γγ final states (despite small branching ratio)
- $\tau\tau$ final states (more difficult)

 In addition: H → bb decays via associated lepton signatures (Higgs should be produced in association with a vector boson or top quarks)

SM predictions ($m_H = 125.5 \text{ GeV}$):

BR $(H \rightarrow WW) = 22.3\%$ BR $(H \rightarrow ZZ) = 2.8\%$ BR $(H \rightarrow \gamma\gamma) = 0.24\%$

 \rightarrow at 125 GeV: only ~11% of decays not observable (gg, cc)

*) LHC Higgs cross-section working group

- Background interpolation in the region of the excess (obtained from sidebands) •
- High signal significance in both experiments: ATLAS: 5.2σ (4.6 σ expected) • CMS:
- 5.7 σ (5.2 σ expected)

Establishes the discovery in this channel alone ٠

Measured signal strengths: $\mu = \sigma_{obs} / \sigma_{SM}$ ATLAS: $\mu = 1.17 \pm 0.27$ CMS: $\mu = 1.14 \pm 0.26$

Vector Boson Fusion qqH

Motivation: Increase discovery potential at low mass Improve and extend measurement of Higgs boson parameters (couplings to W and Z bosons, and fermions in the decays, e.g. τ leptons)

Distinctive Signature of:

- Two high p_T forward jets (tag jets)
 Large invariant mass, large η separation
- Little jet activity in the central region (no colour flow)
 ⇒ central jet Veto

$H \rightarrow \gamma \gamma$ VBF candidate event

 $E_T(\gamma_1) = 80.1 \text{ GeV}, \eta = 1.01$ $E_T(\gamma_2) = 36.2 \text{ GeV}, \eta = 0.17$ $m_{\gamma\gamma} = 126.9 \text{ GeV}$

 $\begin{array}{l} {\sf E}_{\sf T}({\sf jet}_1) = 121.6 \; {\sf GeV}, \; \eta = -2.90 \\ {\sf E}_{\sf T}({\sf jet}_2) = \; 82.8 \; {\sf GeV}, \; \eta = \; 2.72 \\ {\sf m}_{\sf ii} \;\; = \; 1.67 \; {\sf TeV} \end{array}$

Run Number: 204769, Event Number: 24947130 Date: 2012-06-10 08:17:12 UTC

$H \rightarrow \gamma \gamma$ VBF candidate event

= 1.67 TeV

m

Run Number: 204769, Event Number: 24947130 Date: 2012-06-10 08:17:12 UTC

$H \rightarrow ZZ \rightarrow e^+e^- \mu^+ \mu^-$ candidate event

Reconstructed mass spectra from 4ℓ decays

Phys. Rev. D91 (2014) 012006

Phys. Rev. D89 (2014) 092007

Measured signal strengths:

ATLAS:	μ = 1.44	+0.40 - 0.33
CMS:	μ = 0.93	+0.29 - 0.23

Significance in each experiment $> 6\sigma$

• Very significant excesses visible in the "transverse mass" (ATLAS: 6.1 σ) and m_{ll} distributions (CMS: 4.5 σ)

Couplings to quarks and leptons ?

Search for $H \rightarrow \tau\tau$ and $H \rightarrow$ bb decays

Couplings to quarks and leptons ?

- Search for $H \rightarrow \tau\tau$ and $H \rightarrow$ bb decays;
- Challenging signatures due to jets (bb decays) or significant fraction of hadronic tau decays
- Vector boson fusion mode essential for $H \rightarrow \tau \tau$ decays

 Associated production WH, ZH modes have to be used for H → bb decays

• Exploitation of multivariate analyses

Evidence for $H \rightarrow \tau \tau$ decays

JHEP 05 (2014) 104

JHEP 04 (2015) 117

 $m_{\tau\tau}$ distribution, events weighted by In (1+S/B)

Measured signal strengths:

ATLAS: $\mu = 1.43 + 0.43 - 0.37$ (4.5 σ) CMS: $\mu = 0.78 \pm 0.27$ (3.2 σ)

One of the most important LHC results in 2014 / 2015

Results on the search for $H \rightarrow bb$ decays

Reconstructed m_{bb} signals (after subtraction of major, non-resonant backgrounds)

- Reference signal from WZ, and ZZ with Z → bb seen
- Positive, but non-conclusive Higgs boson signal contribution observed

Signal strengths:

ATLAS: $\mu = 0.50 \pm 0.36$ CMS: $\mu = 1.0 \pm 0.5$ **Profile of the New Particle** Is it the Standard Model Higgs Boson?

- Mass ("input parameter")
- Spin, J^{CP} quantum number
- Production rates

Couplings to bosons and fermions

Higgs boson mass

- The two high resolution channels H → ZZ*→ 4ℓ and H → γγ are best suited (reconstructed mass peak, good mass resolution)
- Good control of the lepton and photon energy scales, calibration via Z → ll and J/ψ and Y signals, improved understanding of lepton and photon reconstruction

Impressive accuracy reached: 0.1 - 0.3%

Higgs boson mass (cont.)

-First ATLAS and CMS combination of Higgs boson results-

PRL 114 (2015) 191803

Individual and combined results:

ATLAS + CMS:

 $m_{H} = 125.09 \pm 0.21 \text{ (stat)} \pm 0.11 \text{ (syst)} \text{ GeV}$

Precision of 0.2%

- Statistical uncertainty still dominant
- Major systematic uncertainties: Lepton and photon energy scales and resolutions
- Theoretical uncertainties small

Spin and CP

- Standard Model Higgs boson: $J^P = 0^+$
 - → strategy is to falsify other hypotheses (0⁻, 1⁻, 1⁺, 2⁻, 2⁺)
- Angular distributions of final state particles show sensitivity to spin

In particular: $H \rightarrow ZZ^* \rightarrow 4\ell$ decays (in addition: $H \rightarrow WW^* \rightarrow \ell_V \ell_V$)

- Data strongly favour the spin-0 hypothesis of the Standard Model
- Many alternatives can be excluded with confidence levels > 99%)

Result on different J^{CP} hypothesis tests

 In both experiments: data are consistent with J^P = 0⁺ hypothesis, many alternative models are excluded with high significance

Couplings to bosons and fermions

Signal strengths for various production and decay modes

Combined ATLAS + CMS results

arXiv:1606.02266

Rates for all production and decay modes consistent with the Standard Model expectations

Higgs boson couplings

Production and decay involve several couplings

Production:

Decays: e.g H $\rightarrow \gamma\gamma$ (best example) (Decay widths depends on W and top coupling, destructive interference)

- Benchmarks defined by LHC cross section working group (leading-order tree-levelframework):
 - Narrow width approximation: \rightarrow rates for given channels can be decomposed as:

$$\sigma \cdot B \left(i \to H \to f \right) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$$

i, f = initial, final state $\Gamma_{\rm f}, \Gamma_{\rm H}$ = partial, total width

- Modifications to coupling strength are considered (coupling scale factors κ), tensor structure of Lagrangian assumed as in Standard Model

Results on fit for boson and fermion coupling scale factor

JHEP 08 (2016) 045

Assume only one scale factor for fermion and vector couplings:

 $\kappa_{V} = \kappa_{W} = \kappa_{Z}$ $\kappa_{F} = \kappa_{t} = \kappa_{b} = \kappa_{\tau}$

(top sensitivity via production loop)

Excellent agreement with the Standard Model predictions found

ATLAS and CMS summary on coupling results

JHEP 08 (2016) 045

 λ = Yukawa coupling for fermions $\sqrt{g/2v}$ = couplings for W/Z bosons

"The consistency of the couplings of the observed boson with those predicted for the Standard Model Higgs boson is tested in various ways, and no significant deviations are found."

First Higgs boson results from Run 2 at \sqrt{s} = 13 TeV

Physics Beyond the Standard Model

SUS (S) Grand SUPERSTRING EL Unification so(10) gravity M-theory heterotic YET Ga holonomy EgxEg Type-ILA Type-I super Matter THOUGHT Anti-matter 50(32) Asymmetry OF Type QUANTUM SP DIMENSIONS 22/0 14:005 Energy (Supersymmetry) Composite BLACK Flavor Higgs Gaugino Mediation 8=7 Gauge 8=6 Mediation HIDDEN DIMENSIONS 5:5 Anomaly DIRK LATTER 5:3 RSI NOT Scherk-A 6.3 Schwarz YET 8=1 RSI NOT THOUGHT OF YET THOUGHT OF

Hitoshi Murayama, IPMU Tokyo & Berkeley

Additional Higgs bosons / yy resonances?

- Both ATLAS and CMS searched for resonances in di-photon events using 2015 data at \sqrt{s} = 13 TeV
- Background determined by fitting the data with a smooth function, and independently from Monte Carlo simulation (normalized to data in the low mass region)

Excesses with local significances of 3.6 σ (ATLAS) and 2.6 σ (CMS)

... led to lot of excitement in the theory community ...

2016 data: excess at 750 GeV not confirmed

• 2016 data: - no clustering around 750 GeV, and 3.8 times more data - consistency with 2015 data at the 2.7 σ level (ATLAS)

It appears that the 2015 excess was a statistical fluctuation

Supersymmetry

Important motivation:

- Supersymmetry provides a candidate for dark matter
- Unification of couplings of the three interactions seems possible
- Quadratically divergent quantum corrections are cancelled

LSP: lightest supersymmetric particle

Korrekturen (Λ^2) _ 0

Results on the Search for Supersymmetry

- Example: search for squark and gluino production; decays to jets and LSP
 → jets + large missing transverse energy
- Data are in agreement with predictions from background from Standard Model processes

SUSY contribution would show up here

 $E_T^{miss} / \sqrt{H_T}$ = missing transverse energy normalized to the square root of the total transverse energy (H_T) seen in the event

Results on the Search for Supersymmetry

m(gluino) > 1.8 TeV (95% CL) for the partners of the first two generations and light LSPs; (significant improvement from 1.4 TeV (Run 1))

however:

- Mass limits depend on assumptions on m_x (LSP)
- So far, simple decay scenarios investigated (not most general search)
- Mass limits for third generation squarks are weaker

Results on dedicated searches for stop quarks

- Weaker mass limits for partners of the top quark (lower production rate, tt background)
- Dedicated searches, often with particular assumptions
 - → significant improvements, however, parameter coverage not yet complete!

Is low-energy SUSY dead?

- "Under attack from all sides, but not dead yet."
- Some of the simplest models are ruled out, however, interpretations rely on many simplifying assumptions.
- Plausible "natural" scenarios still not ruled out; Light stop and/or RPV scenarios have fewer constraints.
- There is no reason to give up hope of finding SUSY at the LHC.

Further searches for Dark Matter particles -using signatures with large missing energy-

- Mono-jet
- Mono-photon
- Mono-W or mono-Z
- Mono Higgs (H \rightarrow bb)
- Mono-top

12.9 fb⁻¹ (13 TeV) Events / GeV **CMS** Preliminary II. velet ector, M 10-1 10⁻² Data / Pred nost-fit 1000 1200 200 400600 800 E^{miss} [GeV]

Data are in good agreement with the expectations from Standard Model processes

(applies to all mono-X searches)

Example: mono-jet search, E_T^{miss} spectrum

Interpretation in terms of spin-independent DM scattering cross sections \rightarrow link to direct Dark Matter detection experiments

Model dependent (depends on mediator type (vector, axial-vector,..) and mass) [active, emerging field of common and unified interpretations]

The Future

- Operation at the increased energy of $\sqrt{s} = 13$ TeV until end 2018 (Run 2)
- Upgraded detectors are needed to cope with the higher luminosity; Installation in Long Shutdowns (2019-2020) and (2024-2026)
- LHC long term running plans:

Major Physics Prospects

- Precise measurements of Higgs boson profile (rare, interesting decay modes, test of more exotic models, e.g. composite Higgs, Higgs self coupling, ...)
- Extend the searches for New Physics in all possible directions, cover more complex scenarios, ... + ... look for the unexpected !

Conclusions

- With the operation of the LHC at high energies, particle physics has entered a new era
- Performance of the LHC and the experiments is superb
- A milestone discovery made in July 2012
 - Strong evidence that the new particle is the long-sought Higgs boson of the Standard Model;
 - We moved from the discovery to the measurement phase;
 - The Higgs boson might be portal to New Physics (precision required)
- So far no signals from New Physics, however, only a small fraction of the parameter space at reach at the LHC has been explored
- Exciting times ahead of us, with new, unexplored energy regime in reach