Major Accelerator Facilities in Asia Pacific

Kazuhiro Tanaka (KEK), Chair of ANPhA (Asian Nuclear Physics Association) and the chair of DNP, AAPPS.

ANPhA

- Asian Nuclear Physics Association
 - Launched in 2009
 - Central organization for nuclear physics in Asia
- Eight membership countries and regions
 - Australia, China, India, Japan, Korea, Mongolia, Taiwan, and Vietnam
- Objectives
 - To strengthen "Collaboration" among Asian nuclear research scientists through the promotion of nuclear physics and its transdisciplinary and applications
 - To promote "Education" in Asian nuclear science through mutual exchange and coordination
 - To coordinate among Asian nuclear scientists by actively utilizing existing research facilities
 - To discuss future planning of nuclear science facilities and instrumentation in Asia

ANPhA

- Board meetings
 - Mostly once per year with either symposium or conference
- Most recent one
 - 11th meeting in Tohoku University, Sendai Japan in Nov. 24-25, 2016
 - In conjunction with the ANPhA Symposium
- Practically, ANPhA is an organization to discuss and pursuit issues in Asian nuclear physics community at present.

11th ANPhA Board meeting in Tohoku University, Sendai Japan in Nov. 24-25, 2016 with the ANPhA Symposium

Division of Nuclear Physics of AAPPS

- In the Gyeongju board meeting in Oct. 2015, ANPhA agreed the followings:
 - It is important to strengthen the cooperation between ANPhA and AAPPS.
 - ANPhA can play the leading role of establishing the Division of Nuclear Physics in AAPPS.
- Submission of the **proposal to AAPPS** in December 14, 2015
- **Proposal approved** in the AAPPS Council meeting in Beijing in January 22-23, 2016
- Official approval letter received in January 27, 2016.
- Now ANPhA plays the role of DNP of AAPPS.
 - ANPhA Chair should be the chair of DNP of AAPPS.

DNP/ANPhA: Current EXCO Officers

- Chair
 Kazuhiro Tanaka (KEK)
- Vice Chair
 Weiping Liu

 (CIAE, China)
 Tohru Motobayashi
 (RIKEN, Japan)
 Anthony Thomas
 (Univ. of Adelaide, Australia)
- Secretary
 Hirokazu Tamura
 (Tohoku Univ. to be confirmed)

DNP: Executive Committee (EXCO)

Australia

Anthony Thomas (Univ. of Adelaide)

• China

Furong Xu (Peking Univ.) Guoqing Xiao (IMP)

• India

Vivek Datar (BARC)

• Japan

Kazuhiro Tanaka (KEK) Atsushi Hosaka (RCNP, Osaka Univ.)

• Korea

Myeong-Ki Cheoun (Soongsil Univ.) Byungsik Hong (Korea Univ.)

Mongolia

TBA

• Taiwan

Henry Tsz-king Wong (Academia Sinica)

• Vietnam

Dao Tien Khoa (INST-Hanoi)

Weiping Liu (CIAE) Yugang Ma (SINAP)

Alok Chakrabarti (VECC)

Tohru Motobayashi (RIKEN) Hirokazu Tamura (Tohoku Univ.)

Kevin Insik Hahn (Ewha Womans Univ.)

As of December 5, 2016

Recent activity of DNP: Preparation of ANPhA White Paper

- Table of 26 Accelerator Facilities for Nuclear Physics in Asia
- Data will be updated frequently.
- Critical analysis of the present data will be made for **future facility planning** and for possible **future international collaboration**.
- Data will be open on Web soon, and possibly published in special issue of AAPPS Bulletin.

Town	Institute	Facility	Characteristics	
Canberra, Australia	Australian National University (ANU), Heavy Ion Accelerator Facility		15MV Tandem accelerator + superconducting Linear Accelerator	
Beijing, China	Beijing Tandem Accelerator Nuclear Physics National Laboratory	BTANL	15 MV tandem accelerator, 100 MeV 20 μA proton cyclotron, ISOL	
Shanghai, China	Shanghai Laser Electron Gamma Source	SLEGS	0.4-20 MeV BCS γ-ray source based on Synchrotron Radiation Facility	
Jinping, China	China Jinping underground Laboratory (CJPL), JINPING UNDERGROUND NUCLEAR ASTROPHYSICS EXPERIMENT (JUNA)	CJPL / JUNA	400 kV accelerator (Ion species of Stable nuclei: H to He), Max. Energy: 400 kV*q, Beam Intensity: up to 2.5 emA	
Lanzhou, China	Heavy Ion Research Facility in Lanzhou	HIRFL	SSC cyclotron: K=450 and full ion acceleration CSRm booster synchrotron 12.2 Tm	
Huizhou, China	Heavy Ion Accelerator Facility, Institute of modern Physics	HIAF	Heavy-Ion Linac, Booster-ring ~1GeV/u and Ring spectrometer (Phase 1). Compressor ring ~5GeV/u and Enrgy Recovery Linac.	
Huizhou, China	Chinese Initial ADS	CIADS	The 250 MeV and 10mA (maximum beam current) CW mo superconducting proton LINAC	
New Delhi, India	Inter-University Accelerator Centre		Heavy ion tandem + superconducting linac	
Kolkata, India	Variable Energy Cyclotron Centre	VECC	VEC K130 cyclotron (p,α), K500 Superconducting Cyclotron	
Chiba, Japan	Heavy Ion Medical Accelerator, National	НІМАС	High energy heavy ion beams, up to 800 MeV/u, supplied by linear accelerators and two synchrotron rings	
Tokai, Ibaraki, Japan	J-PARC (Nuclear and Particle Physics Facility)	J-PARC	High Intensity Accelarators, 400MeV LINAC, 3GeV RCS, 50GeV MR	
Osaka, Japan	Research Center for Nuclear Physics, Osaka University	RCNP/LEPS	Cyclotron complex (K140 AVF + K400 Ring) Laser-electron back-scattered photon facility at SPring-8 site, 2.4 and 2.9 GeV.	
SPring-8 site, Hyogo, Japan	Laboratory of Advanced Science and Technology for Industry	NewSUBARU	Laser Compton Scattering Gamma-ray Beam Source (1 - 76 MeV)	
Wako, Saitama, Japan	RIKEN Nishina Center for Accelerator-Based Science, RI Beam Factory	RIBF	Heavy Ion Linac and several big Ring Cycrotrons (Max K=2500MeV), Big Rips Projectile Isotope Separator	

Town	Institute	Facility	Characteristics	
Fukuoka, Japan	Kyushu University, Center for Accelerator and Beam Applied Science		FFAG synchrotron and tandem acceleror	
Tokai, Ibaraki, Japan	Japan Atomic Energy Agency (JAEA), Tandem Accelerator Facility		20MV tandem accelerator and superconducting linac booster.	
Tsukuba, Ibaraki, Japan	University of Tsukuba, Tandem Accelerator Complex	UTTAC	6 MV tandem accelerator / 1 MV Tandetron accelerator	
Sendai, Japan	Tohoku University, Cyclotron and Radioisotope Center	CYRIC	K110 and K12 cycrotrons	
Sendai, Japan	Research Center for Electron-Photon Science, Tohoku University	ELPH	60 MeV High Intensity ELECTRON Linac, 1.3 GeV Booster Electron Synchrotron for GeV tagged photon beams	
Gyeongsangbuk- do, Korea	Korea Multi-purpose Accelerator Complex	КОМАС	100 MeV and 20 MeV Proton linac	
Seoul, Korea	Korea Institute of Science and Technology (KIST), The Accelerator Laboratory		2MeV and 6 MV tandetron accelerators	
Seoul, Korea	Korea Heavy Ion Medical Accelerator at Korea Institute of Radiological and Medical Sciences (KIRMAS)	KIRAMS	AVF cyclotron for 50MeV protons	
Jeollabuk-do, Korea	Advanced Radiation Technology Institute		15-30 MeV 500microA Proton Cycrotron	
Seoul, Korea	National Center for Inter-Universities Research Facilities Electrostatic Ion Accelerator		3.3MV HVEE(High Voltage Engineering Europa) 4130- Tandetron AMS/MPS	
Daejeon, Korea	Rare isotope Accelerator complex for ON- line experiments (RAON), Institute for Basic Science (IBS)	RAON	Superconducting Driver Linac (proton: 600MeV, 660 microA, HI: 200MeV/u), Superconducting Post Linac (HI: 18.5 Mev/u), Cyclotron: (proton 70 MeV, 1mA)	
Hsinchu, Taiwan	Graduate Institute of Nuclear Science (INS) National Tsing Hua University (NTHU)	INS / NTHU	3MV Van de Graaff (KN) Accelerator, 3MV Tandem accelerator (NEC 9SDH-2), open air 500kV accelerator	
Hanoi, Vietnam	Tandem machine at Hanoi University of Natural Science		1.7MV Tandem Pelletron,	
Hanoi, Vietnam	Military Central Hospital 108		30 MeV 300 microA proton cyclotron	

Major Accelerator Facilities in Asia Pacific

- China
 - HIRFL->HIAF (Heavy Ion Research Facility in Lanzhou ->
 - High Intensity Heavy Ion Accelerator Facility)
 - BTANL (Beijing Tandem Accelerator Nuclear Physics National

Laboratory)

- Beijing ISOL
- Korea
 - RISP (Rare Isotope Science Project)
- Japan
 - Spring-8/ELPH (Electromagnetic Probes)
 - RIBF (Radioactive Ion Beam Facility)
 - J-PARC->Hd-ex (Japan proton Accelerator Research Complex ->

Hadron Hall Extension)

Physics promoting projects

	How?	Asia	Europe	America
Quark many body (Hot QCD)	A+A	-	LHC(ALICE) FAIR(SIS300) NICA	RHIC
Quark many body	Hd HI	J-PARC->Hdex HIRFL->HIAF	FAIR(SIS100)	
	EM	Spring-8/ELPH	MAMI	JLAB-12GeV
	Collider	(S-KEKB)	NICA	eRHIC(eIC)
Nucleon many body	PF	RIBF	GSI/FAIR	FRIB
(RI BEAM)	Both	RISP		
	ISOL	HIRFL->HIAF BTANL	SPIRAL2 SPES HIE-ISOLDE Dubna	ARIEL/ISAC2
	Super	Beijing-ISOL	EURISOL	

Fundamental Physics / Computation / Applications

2013 China reasarch facility long range

plan

- Aiming at basic interaction between basic building blaock, search for new physcis beyond standard model, enhance research for nuclear and nuclear astrophsyics
- Particle physics. High energy cosimic ray array, start neutrino and other non accelarator facility and future accelarator R&D
- Nuclear physics. Advanced heavy ion facilty, to reach to top class in nuclear physics research; start R&D of intense RI beam facility

中国核物理学会

Long range plan: Xiangshan forum

"核物理与等离子体物理发展战略研究"第一次会议

2014年9月19-20日

核物理发展战略研究

核物理发展战略研究编写组

2015年7月31日

8章,~320页,~40万字

2014年8月28-29日

香山科學會議

第 502 次学术讨论会

我国核物理和核科学装置发展研讨

Roadmap of NP facilities

1986 北京串列加速器 HI-13

1988 兰州回旋加速器 SSC

2008 兰州储存坏 CSR

BTANL

2021? 重离子应用装置 HIAF

2028? 北京ISOL装置

Heavy Ion Research Facility in Lanzhou (HIRFL)

started in 2009

HIAF装置组成Layout

	Ions	Energy	Intensity
SECR	²³⁸ U ³⁴⁺	14 keV/u	0.05 pmA
iLinac	238U34+	17 MeV/u	0.028 pmA
BRing	²³⁸ U ³⁴⁺	0.8 GeV/u	${\sim}1.4{\times}10^{11}ppp$
SRing	RIBs: 丰质子、丰中子	0.74 GeV/u(A/q=3)	${\sim}10^{910}ppp$
	全剥离的重离子 类H,类He的重离子	0.8 GeV/u(²³⁸ U ⁹²⁺)	$\sim \! 10^{1112} \text{ ppp}$
MRing	238U92+	0.8 GeV/u	${\sim}1.0{\times}10^{11}ppp$

IMP 及相关中心Relation with IMP

CIADS Project (2016-2023)

China Initiative Accelerator Driven System (CIADS)

- 2015年12月建议书获国家发改委批准
 - 经费:~(18+12)亿元(中央财政+地方政府)
- 建设地点:广东省惠州市
- 建设及合作单位:广州分院、近物所、高能所、合肥物质院、401、中广核等

China JinPing Underground Laboratory (CJPL)

JUNA : Jinping underground nuclear astrophysics

Rare Isotope Science Project (RISP)

-RAON

Goal: To build a heavy ion accelerator complex RAON, for rare isotope science research in Korea.

* RAON - Rare isotope Accelerator complex for ON-line experiments

Budget: US\$ 1.44 B (1 B\$~1T Won)

- accelerators and experimental apparatus : 0.46 B\$

- civil engineering & conventional facilities : 0.98 B\$ (incl. construction site purchase)

(recently approved in June 2014)

RAON Concept

RAON Concept

Injector

- □ High intensity RI beams by ISOL & IF
 - **ISOL** : direct fission of ²³⁸U by a <u>70MeV-proton cyclotron</u> ~ 10¹⁴ f/s
 - IF by 200MeV/u, 8.3pµA ²³⁸U by a <u>400kW-superconducting LINAC</u>
- □ High quality neutron-rich **RI** beams
 - ¹³²Sn with up to $\sim 250 \text{MeV/u}$, up to $\sim 10^8 \text{ pps}$
- □ More exotic RI beams by ISOL+IF

RAON Concept

Lineup of RIB production & separation

Expected RIBs at RAON in nuclear landscape

RAON will provide access to unexplored regions of the nuclear chart !

■ RAON will be a powerful RIBs' supplier to users globally
 → More exotic, More intense, and³More various RIBs

RAON Site : Sindong in Daejeon

기초과학연구원 Institute for Basic Science

Future Plans (~5 years) of Nuclear Physics in Japan

Endorsed by Japanese Nuclear Physics Executive Committee, 2016

Science Council of Japan selected Major Project

J-PARC (KEK) Hadron/nuclear physics w/hadron beams -> Hadron Hall extension Fundamental Physics/Particle physics with muons

-> mu-e conversion (COMET), g-2

RIBF (RIKEN) Expand neutron-rich heavy element productions to transuranium **Production of superheavy Z=119 and beyond** -> RIBF upgrade for intensity x30

ELPH (Tohoku) and LEPS@SPring-8 (RCNP Osaka) Hadron Physics with electron beams -> Detector/Beam upgrades

High Energy Heavy Ion Collision (LHC, RHIC, J-PARC) QGP properties, QCD phase diagram, High density matter -> ALICE upgrade, s-PHENIX/STAR upgrade, J-PARC-HI R&D

Nuclear Theory Hadrons via Lattice QCD, Nuclear structure via Monte Carlo Shell Model, etc. -> 9 projects with K computer and beyond

Large Accelerator facilities for nuclear physics in Japan - 1

東北大学 電子光理学研究センター

RESEARCH CENTER FOR ELECTRON PHOTON SCIENCE (ELPH), Tohoku University

LEPS2

Clean tagged photon beams at energies up to 2.9 GeV.

LEPS2 Experimental Building

Booster Synchrotron

LEPS2 Laser Room

LEPS Experimental Hutch

SPring-8 8GeV e⁻ 100mA

457 m

177

New SUBARU

Laser Compton Scattering Gamma-ray Beam -Tunable and Polarized, -1.7 MeV to 76 MeV, 0.33mW

Operated by Research Center for Nuclear Physics (RCNP), Osaka University at SPring-8 site

fragmentation-based RI beams (1990- / 2007-)

Nov. 2016

On November 30th 2016, IUPAC Announced formally

Elements **113**, 115, 117, and 118 are named **nihonium (Nh)**, moscovium (Mc), tennessine (Ts), and oganesson (Og)

RIBF upgrade plan submitted to Science Council of Japan (146M\$)

J-PARC Japan Proton Accelerator Research Complex

J-PARC at Tokai-mura, Ibaraki-ken

J-PARC

RCS

ML

3GeV333µA

OOIVIE

to

"50GeV-PS" 30GeV 25µA, Japan Proton Accelerator Research Complex

Hadron Hall

for Counter Experiments with 150kW SX

Bird's eye photo in January 2016

Construction Status of the beam lines at J-PARC Hadron Hall

Hadron Hall Extension

HIHR

xtension

K1.1

Both Nuclear Physics community and High Energy Physics community gave high priority to this project.

Change of Hadron Mass

baryons

Hypernucleus Factory (S=-1, -2)

K1.1, 1.8: Ultimate research of S=-1 and -2 hypernuclei with high-intensity Kaon beams

High-p

High-p: Origin of the QCD

mass and quark structure of

K1.8

Hypernucleus Microscope

K10

HIHR: Very Precise spectroscopy with highresolution and high-intensity secondary beams

CP Violation: from Discovery to Measurement

KL: Measurement of 100 CP violating events to tackle a quest on the matter-dominated universe

Multi-Strangeness / Charmed Nucleus

K10: Nuclear matter with an extreme condition with high-momentum separated secondary beams (Kaons and Antiprotons)

Discovery of Lepton Flavor Violation

COMET: Search for μ -e conversion with the world-best precision of less than 10^{-16}

HI Accelerator scheme in J-PARC (preliminary)

achieved without any significant beam losses.

J-PARC (JAEA & KEK)

HI linac & Recestor

GeV MR

iD

400 MeV H- Linac

3 GeV RCS

10

Summary

- Major accelerator facilities in Asia Pacific region were briefly reviewed.
- We gave up to construct high energy heavy-ion colliders in Asia Pacific.
- We have big medium energy heavy-ion (RI beam) facilities in AP and their future extension projects.
- Now RI beam facility is changing/expanding from projectile fragmentation facility to the target ion source (ISOL type) facility.
- We have only one facility for electromagnetic probes (LEPS).
- J-PARC is becoming the KAON factory in the world.
- How about baryon rich nuclear matter physics in Japan, i.e. J-PARC-HI?

Summary in Table

	Beams	Asia	Europe	America		
Hot QCD	A+A		LHC(ALICE) FAIR(SIS300) NICA	RHIC	Missing Asian? J-PARC-HI for dense matter?	
Cold QCD	hadron	J-PARC +Hdex HIRFL+HIAF	FAIR(SIS100)		Missing American?	
	e-	Spring-8 /ELPH	ΜΑΜΙ	JLAB-12GeV	1+many	
	collider	(Belle-II)	NICA	eRHIC (elC)	1 in the world?	
	PF	RIBF	GSI/FAIR	FRIB	Good competitions!!	
	Both	RISP				
Many body Problem (RI Beam)	ISOL	HIRFL+HIAF BATANL	SPIRAL2 SPES HIE-ISOLDE	ARIEL		
	Super ISOL	Beijing- ISOL	EURISOL		FRIB upgrade?	

Backup

Shanghai Synchrotron Radiation Facility (SSRF)-II (2017-2021) 10 beamlines, SLEGS is 1 of them: E_gamma 0.4-20.MeV; Delta_E: ~5%; D_theta: 0.5mrad; Flux: 10⁵-10⁷ phs/s

T2K (Tokai-to-Kamioka) Experiment

Purpose of the T2K experiment ;

Generate intense neutrino beam at J-PARC and shoot Super-Kamiokande detector, measure neutrino properties at SK to explore neutrino oscillation parameters, and eventually detect CP violation in the neutrino sector. Hyper-Kamiokande [素粒子]と「宇宙」を地下から見上げる

ハイパーカミオカンデは、地下に設置される100万トン級 の巨大水タンクとそのタンクの中に並べる超高感度光セン サーからなります。この実験装置は、素粒子を観察する「顔 微鏡」であると同時に、飛来するニュートリノを用いて太 陽や短新屋爆発を見る「盛濃鏡」でもあります。陽子崩壊の 発見やニュートリノのCP対称性の破れ(ニュートリノ・反 ニュートリノの性質の違い)の発見、超新星爆発ニュートリ ノの観測などを通して、素粒子の統一理論や宇宙の違化史 の解明を目指します。国際研究プロジェクトとして世界の 研究者が協力し、2025年の実験開始を目指しています。

超高感度光センサー

スーパーカミオカンデのものより50%感度の 高い、世界最大の窒感度光センサーの開発を行っ ています。写真左は、半導体電子増幅素子を内 厳したハイブリッド型光センサーであり、右は 高性能電子増幅電極構造を持つ光センサー。下 の2つの写真はそれぞれの電子増相奈のもの。

100万トンの超大型タンク

スーパーカミオカンデの100年分のデータが ハイパーカミオカンデでは5年で得られるこ とになります、そのため、これまで見えなかっ た素粒子のまれな現象や、対称性のわずかな破 れの確定が可能になります。

実験原理

ハイパーカミオカンデでは、検出器に入ってきたニュートリノ と水が衝突した時にはじき出される荷電粒子が放つ光(チェレ

ンコフ光とよびます)を、壁に 取り付けられた光センサーで 捉えます。得られる光の量や リングの形から、ニュートリ ノのエネルギー、方向、種類 などを決定します。

Nuclear, Hadron, & Particle Physics at Hadron Hall

