

"Shape Isomerism in ⁶⁶Ni"

S. Leoni, B. Fornal, N. Marginean, M. Sferrazza, Y. Tsunoda, T. Otsuka, et al., ...

University of Milano and INFN sez. *Milano, Italy* IFJ-PAN, The Institute of Nuclear Physics, Krakow, Poland IFIN HH, Bucharest, Romania Departement de Physique, Universite libre de Bruxelles, Belgium Center for Nuclear Study, University of Tokyo, Japan

NUSTAR Week 2017

25-29 September 2017 Ljubljana, Slovenia Europe/Ljubljana timezone

Outline

○ Introduction

isomers in molecular chemistry

• Atomic nucleus

shell structure, deformation, potential energy surpace (PES)

- Discovery of nuclear fission (shape) isomers
- Experimental search for shape coexistence/shape isomers
- The unique case of ⁶⁶Ni
- **Relevance for THEORY SHELL Model** *MICROSCOPIC origin of Nuclear Deformation*

ISOMERS in chemistry

In chemistry, an isomer is a molecule with the same molecular formula as another molecule, but with different arrangement of the atoms.

Subgroup: stereoisomers or spatial isomers

Sub-subgroup: conformational isomers (conformers)

Sub-sub-subgroup: rotamers

Butane molecule C₄H₁₀

Conformational isomers

as a function of dihedral angle

Rotation about single bond of butane

Potential energy surface (PES) of a nucleus

Parametrization of the NUCLEAR SHAPE

$$R(\theta,\varphi) = R_0 [1 + \sum_{l,m} a_{lm} Y_{lm}(\theta,\varphi)]$$

TWO-dimensional contour

ONE-dimensional representation

Where do we find secondary minima in the nuclear chart considering only static deformation ?

(no additional degree of freedom involved ... angular momentum, excitations ...)

Already in **1953**, **Hill** and **Wheeler** discussed possible consequences of the <u>existence of two well</u> <u>separated minima</u> in the potential energy surface <u>for the ground state</u> of the system.

1961 - discovery of the first <u>spontaneously</u> <u>fissioning isomer</u> in ²⁴²Am with a half-life 14 msec

C. M. Polikanov et al., Zh. Eksp. Teor. Fiz. 42, 1464 (1962) [Sov. Phys.- JETP 15, 1016 (1962)].

234Bk	235Bk	236Bk	237Bk	238Bk	239Bk	240Bk	241Bk	242Bk	243Bk	244Bk	245Bk	246Bk	247Bk	248Bk	249Bk	250Bk
233Ст	234Cm	235Cm	236Ст	237Ст	238Cm	239Ст	240Cm	241Cm	242Cm	243Cm	244Cm	245Cm	246Ст	247Ст	248Cm	249Cm
232Am	233Am	234Am	235Am	236Am	237Am	238Am	239Am	240Am	241 Am	242Am	243Am	244Am	245Am	246Ат	247 Am	248Am
231Pu	232Pu	233Pu	234Pu	235Pu	236Pu	237Pu	238Pu	239Pu	240Pu	241Fu	242Pu	243Pu	244Pu	245Pu	246Ри	247Pu
230 N p	231Np	232 N p	233Np	234 N p	235 N p	236Np	237Np	238Np	239Np	240 N p	241 N D	242 N D	24 3 N D	244Np	245 N p	
229U	230U	231U	232U	233U	234U	235U	236U	237U	238U	239U	240U	241U	242U	243U		
228Pa	229Pa	230Pa	231Pa	232Pa	233Pa	234Pa	235Pa	236Pa	237Pa	238Pa	239Pa	240Pa	241Pa			
227Th	228Th	229Th	230Th	231Th	232Th	233Th	234Th	235Th	236Th	237Th	238Th	239Th				
226Ac	227 Ac	228Ac	229Ac	230Ac	231 Ac	232Ac	233Ac	234Ac	235Ac	236Ac	237 Ac					

28

1968

SPONTANEOUSLY FISSIONING ISOMERS

S. M. POLIKANOV Joint Institute for Nuclear Research, Dubna Usp. Fiz. Nauk 94, 43-62 (January, 1968) SOVIET PHYSICS USPEKHI VOLUME 15, NUMBER 4 JANUARY-FEBRUARY 1973

1973

Physics of Our Days

NUCLEAR SHAPE ISOMERS

S. M. POLIKANOV

Joint Institute for Nuclear Research, Dubna

Usp. Fiz. Nauk 107, 685-704 (August, 1974)

Deformation

539.144.7

Shape isomers in actinides

- **HIGH Potential BARRIER**
- Nucleus trapped In the second minimum

TWO EXCEPTIONS

• Spontaneous fission from the second minimum

234Bk	235Bk	236Bk	237Bk	238Bk	239Bk	240Bk	241Bk	242Bk	243Bk	244Bk	245Bk	246Bk	247Bk	248Bk	249Bk	250Bk
233Ст	234Cm	235Cm	236Cm	237Cm	238Cm	239Cm	240Cm	241Cm	242Cm	243Cm	244Cm	245Cm	246Ст	247Cm	248Cm	249Cm
232Am	233Am	234Am	235Am	236Am	237 A.m	238Am	239Am	240Am	241 A.m	242Am	243Am	244Am	245Am	246Am	247 Am	248Am
231Pu	232Pu	233Pu	234Pu	235Pu	236Pu	237Pu	238Pu	239Pu	240Pu	241Pu	242Pu	243Pu	244Pu	245Pu	246Ри	247Pu
230Np	231 N D	232 N p	233Np	234 N D	235 N p	236Np	237Np	238 N p	239 N D	240 N p	241 N D	242 N D	24 3 N D	244 N D	245 N D	
229U	230U	231U	232U	233U	234U	2350	236U	. 371	238U	139U	240U	241U	242U	24 3 U		
228Pa	229Pa	230Pa	231Pa	232Pa	233Pa	234Pa	6555 a	236Pa	60 7 7-8	238Pa	239Pa	240Pa	241Pa			
227Th	228Th	229Th	230Th	231Th	232Th	233Th	234Th	235 1 4	236T h	237Th	238Th	239Th				
226Ac	227 Ac	228Ac	229Ac	230Ac	231 Ac	232Ac	233Ac	234Ac	35Ac	236Ac	237 Ac					

SHAPE ISOMERS very peculiar metastable states

- HIGH Potential BARRIER
- Nucleus trapped In the minimum
- very retarded photon decay (10⁷ hindrance)

Structures living in "separate worlds"

MAIN FINGER PRINT: <u>hindrance</u> of deexciting transitions

Can OTHER (lighter) nuclei exhibit these features ?

SEARCH for SHAPE ISOMERS in LIGHTER nuclei:

- MOST CLEAR-CUT cases of SHAPE Coexistence
- a PROBE of <u>MICROSCOPIC</u> origin of nuclear deformation within a pure SHELL Model Approach

Ideal Cases are O⁺ states – to avoid ambiguity given by spin effects

(Actinides are **NOT doable** by SHELL Model ...)

SHAPE Coexistence in Atomic Nuclei Appearence of different shapes at low excitation energy

K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011)

Through the last 40 years of experimental activities, the concept has evolved:

1) exotic rarity (1970')

- 2) islands of occurrence (1990')
- 3) <u>current believe</u>: occurrence in all (but the lightest) nuclei

No retardation in γ decay is observed !!!!

Potential barrier **NOT sizable** enough to prevent fast shape changes

Predictions for SHAPE ISOMERS - Mean Field Based

Macro-Microscopic Model – P. Moeller et al. 2012

Global Calculation Searching for Nuclear Shape Isomers

Study of 7206 nuclei from A=31 to A=209

Predictions for SHAPE ISOMERS – SHELL Model Based [Otsuka group and Nowacki, Lenzi, Poves, ...]

state-of-the-art SHELL Model: possible for A <= 100</pre>

new calculations scheme, very powerfull computer

Investigation of MICROSCOPIC NATURE - wave functions, $B(E\lambda/M\lambda)$, ...

Monte Carlo SHELL Model (T. Otsuka's Group – K computer 10⁶ processors) 66 Ni – 78 Ni: FULL pf + g_{9/2} + d_{5/2} for both neutrons and protons

Y. Tsunoda et al., PRC 89 (2014) 031301R

Experimentally ... <u>No retardation</u> is found in ⁶⁸Ni and ⁷⁰Ni

B. P. Crider et al., Phys. Lett. B 763, 108 (2016)

Predictions of four models \rightarrow shape isomerism in ⁶⁶Ni

Microscopic Hartree-Fock-Bogoliubov

Macro-Microscospic Model

Microscopic Hartree-Fock plus BCS

Monte Carlo Shell Model

MONTE CARLO SHELL MODEL Calculations Y. Tsunoda and T. Otsuka, Univ. of Tokyo

MONTE CARLO SHELL MODEL Calculations Y. Tsunoda and T. Otsuka, Univ. of Tokyo

Decay Scheme of 66Ni

6579.9

6375.7

 10^{+}

R. Broda et al., Phys. Rev. C 86, 064312 (2012)

Excited states energies \rightarrow One-to-one correspondence (<u>including 0⁺ states</u> !) B(E2/M1) (from our Bucharest EXP) \rightarrow very well reproduced !!

β -decay population of ⁶⁶Ni

D. Pauwels, P. Van Duppen et al., ARIS-2011 Conference

Our Bucharest Experiment (@IFIN HH) ¹⁸O + ⁶⁴Ni → ¹⁶O + ⁶⁶Ni (2n Transfer - 1 MeV below Coulomb Barrier) σ (⁶⁶Ni) \approx few mb - FUSION strongly suppressed

N=40

11 LaBr₂(Ce) - 1.75% eff

THICK Target – 5 mg/cm² \bigcirc

PLUNGER - 12 distances \cap From 10 to 3000 μm v/c ≈ 2.2 % TOF of 155 ps in 1 mm

> 1.5 month

30 pnA beam current

¹⁸O+⁶⁴Ni \rightarrow ¹⁶O+⁶⁶Ni E_{beam} = 39 MeV 2n transfer below Coulomb Barrier

at IFIN HH Bucarest

All transitions belong to ⁶⁶Ni !!

 $^{18}O+^{64}Ni \rightarrow ^{16}O+^{66}Ni$ E_{beam} = 39 MeV 2n transfer below Coulomb Barrier

at IFIN HH Bucarest

All transitions belong to ⁶⁶Ni !!

⁶⁶Ni

0⁺₃ is spherical (very similar to **0**⁺₁): HINDRANCE due to cancellation of matrix elements

0⁺₄ **is prolate**: HINDRANCE due to **shape change** through high potential barrier !!!!

0⁺₄ is prolate: HINDRANCE due to shape change through high potential barrier !!!

⁶⁶Ni:

lightest and unique example

- apart from the actinides –

of 0⁺ deformed state deexciting via HINDERED γ transition

a SHAPE-ISOMER-like structure !!!!

A probe of TYPE II SHELL Evolution:

rearrengement of nucleons in orbitals causes <u>emergence of deformation</u>

PRL 118, 162502 (2017)

PHYSICAL REVIEW LETTERS

week ending 21 APRIL 2017

G

Multifaceted Quadruplet of Low-Lying Spin-Zero States in ⁶⁶Ni: Emergence of Shape Isomerism in Light Nuclei

S. Leoni,^{1,2,*} B. Fornal,³ N. Mărginean,⁴ M. Sferrazza,⁵ Y. Tsunoda,⁶ T. Otsuka,^{6,7,8,9} G. Bocchi,^{1,2} F. C. L. Crespi,^{1,2} A. Bracco,^{1,2} S. Aydin,¹⁰ M. Boromiza,^{4,11} D. Bucurescu,⁴ N. Cieplicka-Orynczak,^{2,3} C. Costache,⁴ S. Călinescu,⁴ N. Florea,⁴ D. G. Ghită,⁴ T. Glodariu,⁴ A. Ionescu,^{4,11} Ł.W. Iskra,³ M. Krzysiek,³ R. Mărginean,⁴ C. Mihai,⁴ R. E. Mihai,⁴ A. Mitu,⁴ A. Negreț,⁴ C. R. Niţă,⁴ A. Olăcel,⁴ A. Oprea,⁴ S. Pascu,⁴ P. Petkov,⁴ C. Petrone,⁴ G. Porzio,^{1,2} A. Şerban,^{4,11} C. Sotty,⁴ L. Stan,⁴ I. Ştiru,⁴ L. Stroe,⁴ R. Şuvăilă,⁴ S. Toma,⁴ A. Turturică,⁴ S. Ujeniuc,⁴ and C. A. Ur¹²
¹Dipartimento di Fisica, Università degli Studi di Milano, I-20133 Milano, Italy
²INFN sezione di Milano via Celoria 16, 20133, Milano, Italy
³Institute of Nuclear Physics, PAN, 31-342 Kraków, Poland
⁴Horia Hulubei National Institute of Physics and Nuclear Engineering—IFIN HH, Bucharest 077125, Romania
⁶Center for Oldar Physics, University of Dekydel Reg. [ArkLob Celle Physics], Japan

UNIVERSITÀ DEGLI STUDI DI MILANO

IVth Topical Workshop on Modern Aspects in Nuclear Structure The Many Facets of Nuclear Structure

BORMIO 19 - 25 February 2018

Organizers: A. Bracco, F. Camera, G. Colo, S. Leoni; Scient. Secretaries: F. Crespi, X. Roca-Maza

Università degli Studi di Milano and Istituto Nazionale di Fisica Nucleare (sez. Milano) are pleased to announce the Fourth Edition of this new series of Topical Workshops on Modern Aspects of Nuclear Structure. The meetings are organized every second year in the month of February in Bormio, focusing on specific topics which are relevant for the nuclear physics community and related areas. Within the workshop, experimental and theoretical collaborations will have the opportunity to present and discuss their latest development on physics and more technical issues (Link to Previous Edition Bormio 2016).

Web-Page: http://www.mi.infn.it/WSBormio-Milano2018/

The Workshop will be preceded on February 19th by a Satellite Meeting focused on "Working at the interface between Nuclear Structure and Reactions" - more details will be provided soon -(Please contact Gianluca Colò - Gianluca.Colo@mi.infn.it.)

PRIZES for Young Speakers offered by CAEN

Deadline for ABSTRACT Submission 20 Sep. 2017

E-mail: wsbormio-milano@mi.infn.it