Charge-changing and total interaction cross section measurements

Maya Takechi, Niigata University

Collaborators

M. Tanaka,^{*2} A. Homma,^{*1} Y. Tanaka,^{*2} T. Suzuki,^{*3} M. Fukuda,^{*2} D. Nishimura,^{*4}

T. Moriguchi,*⁵ D. S. Ahn,*⁶ A. S. Aimaganbetov,*^{7,*8} M. Amano,*⁵ H. Arakawa,*³ S. Bagchi,*⁹

K.-H. Behr,*9 N. Burtebayev,*7 K. Chikaato,*1 H. Du,*2 T. Fujii,*3 N. Fukuda,*6 H. Geissel,*9 T. Hori,*2

S. Hoshino,^{*1} R. Igosawa,^{*3} A. Ikeda,^{*1} N. Inabe,^{*6} K. Inomata,^{*3} K. Itahashi,^{*6} T. Izumikawa,^{*10}

D. Kamioka,*⁵, N. Kanda,*¹ I. Kato,*³ I. Kenzhina,*¹¹ Z. Korkulu,*⁶ Ye. Kuk,*^{7,*8} K. Kusaka,*⁶

K. Matsuta,*² M. Mihara,*² E. Miyata,*¹ D. Nagae,*⁶ S. Nakamura,*¹ M. Nassurlla,*⁷ K. Nishimuro,*³

K. Nishizuka,^{*1} S. Ohmika,^{*3,} K. Ohnishi,^{*2} M. Ohtake,^{*6} T. Ohtsubo,^{*1} H. J. Ong,^{*12} A. Ozawa,^{*5}

A. Prochazka,*9 H. Sakurai,*6, C. Scheidenberger,*9 Y. Shimizu,*6 T. Sugihara,*2 T. Sumikama,*6

S. Suzuki,*5 H. Suzuki,*6 H. Takeda,*6 Y. K. Tanaka,*9 T. K. Zholdybayev,*7 T. Wada,*1

K. Wakayama,^{*3}, S. Yagi,^{*2} T. Yamaguchi,^{*3}, R. Yanagihara,^{*2} Y. Yanagisawa,^{*6} and K. Yoshida^{*3}

*1 Department of Physics, Niigata University, *2 Department of Physics, Osaka University,

*³ Department of Physics, Saitama University, *⁴ Department of Physics, Tokyo University of Science,

*5 Institute of Physics, University of Tsukuba, *6 RIKEN Nishina Center, *7 The Institute of Nuclear Physics Kazakhstan

*8 L. N. Gumilyov Eurasian National University ,*9 GSI Helmholtzzentrum fu⁻r Schwerionenforschung

*10 Radioactive Isotope Center, Niigata University, *11 Al - Farabi Kazakh National University

*12 Research Center for Nuclear Physics, Osaka University

Nuclear Size and Interaction Cross Sections

Existing data for Neutron Skin Thickness

How to determine Neutron Skin Thickness for Exotic Nuclei?

Neutron Skin ΔR = Neutron Radius R_n - Proton Radius R_p

 σ_{I} (Interaction cross section) \rightarrow Matter Radius

$$\boldsymbol{\sigma}_{\mathrm{R}} = \int \mathrm{d}\boldsymbol{b} \left[1 - \exp\left(-\int d^2 \boldsymbol{r} \sum_{i,j} \sigma_{NN}(E) \boldsymbol{\rho}_{z}^{P_i}(\boldsymbol{r}) \boldsymbol{\rho}_{z}^{T_j}(\boldsymbol{r} - \boldsymbol{b})\right) \right]$$

To know Neutron Skin Thickness, Rp is necessary!

Stable Nuclei :

 σ_{I} -

Electron Scattering Experiment X-ray Measurements Muonic Atom

Unstable Nuclei : Isotope shift Measurements

Proton Radii

Sensitive to the Coulomb Potential of

Protons

New Method : Charge Changing Cross Section

Proton Distribution Radius Rp and σ_{CC}

Determination of skin thickness Charge radii from CC cross sections Glauber Calculation for σ_{CC} σ_{CC} calculation using charge distribution of nucleus $\sigma_{cc} = \int db \Big[1 - \exp \Big\{ - \Big(\sigma_{pp} \int \rho_{proton}^{Projectile} \rho_{proton}^{Target} + \sigma_{np} \int \rho_{proton}^{Projectile} \rho_{neutron}^{Target} \Big) \Big\} \Big]$

σ_{CC} Measurements

σ_{CC} Measurements for ^{40-48, 50}Ca, ⁵⁸⁻⁶⁴Ni, ³⁸⁻⁴⁷K, ⁶²⁻⁸⁰CuCharge Radii are known(Isotope-shift Measurements)

Study of $\sigma_{CC}(Expt..) / \sigma_{CC}(Calc.)$ for A>40 nuclei in wide Z/N range

 σ_{I} and σ_{CC} Measurements for $^{58\text{--}78}\text{Ni}$

Existing data for Neutron Skin Thickness

Experiment at RIBF

RIBF ZDS F11, two MUSICs from GSI

Experiment at RIBF

Produced Beam around Ni Region ²³⁸U on Be Abrasion Fission

										⁷⁰ Ge		72 _{Ge}	⁷³ Ge	74 _{Ge}		⁷⁶ Ge							⁸³ Ge	⁸⁴ Ge
										⁶⁹ Ga		71 _{Ga}									⁸⁰ Ga	⁸¹ Ga	⁸² Ga	⁸³ Ga
									⁶⁷ Zn	⁶⁸ Zn	⁶⁹ Zn	⁷⁰ Zn	71 _{Zn}	72 _{Zn}	73 _{Zn}			⁷⁶ Zn		⁷⁸ Zn	⁷⁹ Zn	⁸⁰ Zn	⁸¹ Zn	⁸² Zn
					62Cu	⁶³ Cu	⁶⁴ Cu A	⁶⁵ Cu	⁶⁶ Cu	67Cu	⁶⁸ Cu	⁶⁹ Cu	70Cu	71Cu	²²Cu	73 _{Cu}	74 _{Cu}	75Cu	76Cu	n _{Cu}	⁷⁸ Cu	⁷⁹ Cu	⁸⁰ Cu	
		⁵⁸ Ni	⁵⁹ Ni	⁶⁰ Ni	⁶¹ Ni	⁶² Ni	⁶³ Ni A	⁶⁴ Ni	⁶⁵ Ni	⁶⁶ Ni	67Ni	⁶⁸ Ni	⁶⁹ Ni	⁷⁰ Ni	71 _{Ni}	72 _{Ni}	73 _{Ni}	⁷⁴ Ni	⁷⁵ Ni	⁷⁶ Ni	⁷⁷ Ni	⁷⁸ Ni	⁷⁹ Ni	
		57Co	⁵⁸ Co	⁵⁹ Co	⁶⁰ Co	61Co	62Co	63Co	⁶⁴ Co	65Co	66Co	67 _{Co}	68Co	⁶⁹ Co	70 _{Co}	71 _{Co}	72 _{C0}	73 _{Co}	74Co	75 _{Co}	76 _{Co}			
e L		⁵⁶ Fe	57Fe	⁵⁸ Fe	⁵⁹ Fe	⁶⁰ Fe	61Fe	62Fe	⁶³ Fe	⁶⁴ Fe	65 _{Fe}													
n	⁵⁴ Mn	⁵⁵ Mn	⁵⁶ Mn	57Mn	⁵⁸ Mn	⁵⁹ Mn	⁶⁰ Mn	⁶¹ Mn	⁶² Mn	⁶³ Mn	⁶⁴ Mn													
r	⁵³ Cr	⁵⁴ Cr	55Cr	⁵⁶ Cr																				

σ_{CC} Measurements for ^{40-48, 50}Ca, ⁵⁸⁻⁶⁴Ni, ³⁸⁻⁴⁷K, ⁶²⁻⁸⁰Cu Charge Radii are known (Isotope-shift Measurements)

σ_I and σ_{CC} Measurements for ⁵⁸⁻⁷⁸Ni and nuclides nearby

Measurements : Transmission Method

$$\sigma_{\rm I \, or \, CC} = -\frac{1}{t} \ln \left(\frac{N_2}{N_1} \right)$$

 N_1 : Incident particle

 σ_I N_2 : Without changing Z and A σ_{CC} N_2 : Without changing Z

Experimental Setup

measured simultaneously

F5 Target Measurement

Identification : Δ*E* - *Bρ* - *TOF* Method Magnetic Rigidity (Bρ) : F5 PPAC Energy Loss : Ion Chamber at F3 (F3IC) Time of Flight of F3 - F5 : F3PL, F5PL

Identification : $\Delta E - B\rho - TOF$ Method

Magnetic Rigidity (Bp) : F5 PPAC Energy Loss : Ion Chamber at F5 and F7 (F5IC, F7IC) Time of Flight of F5 - F7 : F5PL, F7PL

F11 Target Measurement

F11 Target Measurement

