

A New Method for β-Delayed Neutron-Emission Probability Measurements

I. Mardor^{1,2}, T. Dickel^{3,4}, S. Ayet³, S. Bagchi^{5,3,4}, S. Beck^{3,4}, H. Geissel^{3,4}, F. Greiner⁴, E. Haettner³, C. Hornung⁴, D. Kostyleva^{3,4}, N. Kuzminchuk³, B. Kindler³, B. Lommel³, G. Martínez-Pinedo⁶, I. Miskun⁴, I. Mukha³, E. Piasetzky¹, S. Pietri³, W. Plaß^{3,4}, I. Pomerantz¹, A. Prochazka³, S. Purushothaman³, C. Rappold^{3,4}, T. Saito^{3,7,8}, C. Scheidenberger^{3,4}, Y. Tanaka^{3,4}, H. Weick³, J. Winfield³, and the Super-FRS Experiment Collaboration

¹Tel Aviv University, Tel Aviv, Israel
 ²Soreq NRC, Yavne, Israel
 ³GSI, Darmstadt, Germany
 ⁴Justus-Liebig-Universität, Gießen, Germany
 ⁵Saint Mary's University, Halifax, Canada
 ⁶Technische Universität Darmstadt, Darmstadt, Germany
 ⁷Helmholtz Institute Mainz, Germany
 ⁸Iwate University Morioka, Japan

NUSTAR Week 2017, Ljubljana, Slovenia, September 28, 2017

Abstract

- We propose a new method for measuring β -delayed single- and multi-neutron emission probabilities (P_{xn}) (and also mass, Q-values and T_{1/2}), in the following way:
 - Use in-flight separated fission fragments from the FRS
 - Implant and store them in the Cryogenic Stopping Cell (CSC) for decay
 - Identify and count the precursors and decay daughters simultaneously with the MR-TOF-MS
- Method is direct, essentially background free, model independent and complementary to worldwide programs
- Especially suited for **multi-neutron** emission probabilities (x>1)
 - First measurements of n-rich fission fragments
 - Extended measurements towards neutron drip line and N~126 region

Motivation for βxn measurements (1/2)

• r-process nucleosynthesis¹

- Detours in β-decay chains
- More neutrons during freeze-out

Nuclear physics models²

- Calculations of n- γ competition
- Optical models for neutron transmission in the nucleus
- Nuclear energy level schemes

Nuclear reactor operation³

- Next generation reactors
- New fuel types
- Accelerator Driven Systems

• Worldwide βxn programs³

- Mostly using n, β , γ detectors
- Usually no direct recoil identification

¹ R. Surman et al., JPS Conf. Proc., 010010 (2015)

² M. R. Mumpower et al., Physical Review C 94, 064317 (2016)

³ IAEA CRP on a Reference Database for Beta-Delayed Neutron Emission (2013-2017)

Motivation for βxn measurements (2/2)

Limited P_{xn} data (x>1)

- Only 3(!) P_{2n} values appear in data bases in fission fragment region: ⁸⁶Ga, ⁹⁸Rb, ¹⁰⁰Rb
- P_{2n} (¹³⁶Sb) measurements (β 2n coincidence) at TETRA@ALTO (2011) and BELEN@JYFL (2014)
- P_{2n} (¹⁴⁰Sb) published recently ($\beta\gamma$ coincidence) at WAS3ABi+EURICA@RIKEN (2017)

¹I. Dillmann et al., AIP Conference Proceedings 332 ,1594 (2014)
 ²B. Moon et al., Phys. Rev. C , 95, 044322 (2017)
 ³R. Caballero-Folch et al., Phys. Rev. Lett. , 117, 012501 (2016)

• Given the importance of P_{xn} measurements, it is worthwhile to pursue a complementary method, which relies on direct identification and counting of βxn decay daughter isotopes

Method Overview (1/3)

Method Overview (2/3)

- Precursor beam implantation for 5-10 msec, at a selected frequency (1 Hz or less)
- Between beam spills, precursors decay according to open branches and P_{xn} values (x=0,1,2)
- Before next beam spill, precursors and decay daughters are extracted towards MR-TOF-MS

Method Overview (2/3)

- Precursor beam implantation for 5-10 msec, at a selected frequency (1 Hz or less)
- Between beam spills, precursors decay according to open branches and P_{xn} values (x=0,1,2)
- Before next beam spill, precursors and decay daughters are extracted towards MR-TOF-MS

Method Overview (2/3)

- Precursor beam implantation for 5-10 msec, at a selected frequency (1 Hz or less)
- Between beam spills, precursors decay according to open branches and P_{xn} values (x=0,1,2)
- Before next beam spill, precursors and decay daughters are extracted towards MR-TOF-MS

Method Overview (3/3)

- Recoils (and the precursors) are identified and counted by their masses via the Ion Catcher MR-TOF-MS (isobars and even isomers can be resolved within 10's ms)
- P_{xn} = N_{xn}/(N_{0n}+N_{1n}+...+N_{xn}) where N_{xn} is the amount of βxn decay daughters
- Masses will be measured by MR-TOF-MS
- Q_{βxn} for all x will be inferred from precursor and decay daughters mass differences
- T_{1/2} can be deduced from varying CSC containment times, or from precursor-daughter ratios for fixed containment times

T. Dickel et al., NIM A 777, 172 (2016)

Implant precursors in CSC (1/3)

[3] Total: All reactions (pps)

Implant precursors in CSC (2/3)

- Key to required purity: **Combination** of FRS and CSC
 - Thin (10 mg/cm²) CSC provides crucial additional separation, by not stopping potential background sources

- Harmful beam induced background risks
 - 1. βxn decay daughters: can be isolated and subtracted by varying CSC storage time
 - 2. Lower isotope, isotone and isobar: decay products (while in CSC) might mask precursor's β n and β 2n decay products
 - P_{xn} specificity limit is at 10⁻⁴ level

Another isotopes 'source': Upstream neutron removal

- Δ depth ~ A/Z² ~ 1% (~135/136)
- Only neutron removal recoils from last 1 gr before CSC, will be stopped in CSC (10mg = 1% of 1gr)
- At relevant energies, **CS**_n~ **50 mb**
- Effect at **10⁻⁴ level**

Identify and count recoils (1/2)

- Recoils (and the precursor) are identified and counted by their masses via the Ion Catcher MR-TOF-MS (isobars and even isomers can be resolved within 10's ms)
- $P_{xn} = N_{xn}/(N_{0n}+N_{1n}+...+N_{xn})$ where N_{xn} is the amount of βxn recoils
- There will be no CSC chemical effects on P_{xn} evaluation because:
- All counted recoils are isotopes of the same element

It was established in previous experiments that CSC survival and extraction efficiency is **essentially element independent**, including comparison of a **noble element (Rn)**, and one of the **most reactive** ones **(Th)**

Identify and count recoils (2/2)

Major method advantage:

P_{xn} measurement efficiency is independent of x

Proposed first experiments (1/2)

- Start with n-rich isotopes with the highest current GSI rate, with $Q_{\beta 2n} > 0$
- Attempt to look for those with significant physics impact
- Repeat known P_{1n} (and also P_{2n}) measurements
- Focus on isotopes that can generate 10's of β 2n daughters in a few shifts
- As FOM, define 'effective cross section' production cross section × P_{2n}

CS×P _{2n} =	1371 24.5 S β-: 100.00% β-π: 7.14% -6086	1381 6.23 S β-: 100.00% β-n: 5.56% -1693	1391 2.280 S β-: 100.00% β-n: 10.00% -2230	1401 0.86 S β-: 100.00% β-n: 9.30% 223	1411 0.43 S β-: 100.00% β-π: 21.20% -425	142I 222 MS β-: 100.00% β- π? 2.1E+3 β-2n: ?
10 ⁻² ×10 ⁻³ = 10 ⁻⁵ mb	136Te 17.63 S β-: 100.00% β-π: 1.31% -6524	137Te 2.49 S β-: 100.00% β-n: 2.99% -1667	138Te 1.4 S β-: 100.00% β-π: 6.30% -2293	1 39Te >1 50 NS β-: 100.00% β-π 9	140Te >300 NS β-: 100.00% β-π -7.4E+2	141Te >150 NS β-: 100.00% β-π 1.8E+3
Q _{β2n} > 0	135Sb 1.679 S β-: 100.00% β-n: 22.00% -2896	136Sb 0.923 S β-: 100.00% β-n: 16.30% 1884 β-2n: ?	13785 492 MS β-: 100.00% β-π: 49.00% 1.53E+3 β-2n: ?	138Sb 348 MS β-: 100.00% β-n: 72.00% 4.1E+3 β-2n: ?	1 39 Sb 93 MS β-: 100.00% β-n: 90.00% 3.4E+3	140Sb >407 NS β-: 100.00% β-π 5.6E+3

Proposed first experiments (2/2)

Objective	Motivation				
Implement and demonstrate a novel P _{xn} measurement method	 Complementary to worldwide programs Important for confidence in existing and new data 				
4 improved accuracy P _{1n} for ¹³⁵⁻¹³⁸ Sb	• 4 more P _{2n} measurements in fission fragment region				
4 new P _{2n} for ¹³⁶⁻¹³⁸ Sb, ¹⁴² I and 1 new P _{1n} for ¹⁴² I	• Systematics of an isotope chain and a nearby isotope				
1 improved mass and Q _{bxn} values for ¹³⁷ Sb	 P_{xn} of Sb: highest impact on r-process 				
2 new masses and Q _{bxn} values for ¹³⁸ Sb, ¹⁴² I	 P_{xn} of ¹³⁵⁽¹³⁷⁾Sb: 1st(2nd) priority lists of IAEA 				
Simultaneous with P _{xn} measurements	• ¹⁴² I: heaviest, highest Z β 2n precursor measured yet				

		P1n		P2n				Expected Results				
Name	T1/2	Exp	Δ	Exp	Mi	Ma	Мо	Shifts	Precursors	β dtrs	β1n dtrs	β2n dtrs
	Sec	%	%	%	%	%	%					
135Sb	1.679	22	3					0.5	2.7E+04	6.3E+04	1.8E+04	
136Sb	0.923	16.3	3.2	0.28#		0.2	6.2	1	1.1E+04	2.7E+04	5.2E+03	8.9E+01
137Sb	0.484	49	6	?		0.1	0.5	4.5	1.5E+04	2.3E+04	2.2E+04	4.5E+01
1421	0.222	25#	?	?	0.1	0.3	1.9	5	2.8E+03	3.1E+04	1.0E+04	4.2E+01
138Sb	0.35	72	8	?	0.3	0.4	30	5	5.7E+02	1.1E+03	2.8E+03	1.2E+01

Green – new measurement, **Yellow** – improved accuracy measurement, **#** - evaluation, **?** – no existing value **Mi**, **Ma**, **Mo** – P_{2n} theoretical predictions of **Mi**ernik, **Ma**rketin et al, **Mo**ller et al.

- ~40 β 2n events for ¹³⁶⁻¹³⁷Sb and ¹⁴²I \rightarrow ~15% stat. uncertainty, similar to expected syst. uncertainty
- ~10 β 2n events for ¹³⁸Sb, the estimated minimum for unambiguous identification in MR-TOF-MS.

FAIR Phase-1 - P_{xn} near drip line and N~126

- Phase-0
 - $CS \times P_{2n} =$ $10^{-2} \times 10^{-3} = 10^{-5} \text{ mb}$
- Phase-1
 - $CS \times P_{2n} =$ $10^{-5} \times 10^{-3} = 10^{-8} \text{ mb}$
 - Conservative, since P_{2n} increases with N
- Phase-1
 - $CS \times P_{1n} =$ $10^{-6} \times 10^{-2} = 10^{-8} \text{ mb}$
 - Conservative, since P_{1n}
 increases with N

"Understanding the 3rd r-process peak by means of comprehensive measurements of **masses, lifetimes, neutron branchings,** dipole strength, and level structure along the N=126 isotones" (1st highlight of the NUSTAR MSV Phase I program)

THANK YOU