Experimental Evidence of Type II Shell Evolution and shape coexistence in the $g_{9 / 2}$ shell

A.I. Morales
Instituto de Física Corpuscular (CSIC-Universitat de València)
Università degli Studi di Milano
INFN Sezione di Milano

MOTIVATION: Type-II Shell evolution and the tensor force

(20)

p-n tensor torce-component
enhances multicle particte-cu $(5 / 2-2$, excitations

MOTIVATION: Development of shape coexistence in Ni

Monte Carlo shell-model (MCSM)

- Full pf-g9/2-d5/2 model space
- A3DA Hamiltonian
[Y. Tsunoda et al., PRC 89, 031301(R) (2014)]

Tensor-force component of protonneutron interactions plays crucial roles in the shape coexistence
${ }^{70} \mathrm{Ni}$

Deeper local minimum at prolate deformation

Coupling of the $f_{7 / 2}$ proton-hole to the $1 / 2^{-}$ β-decaying isomer in $\mathrm{Ni} \rightarrow\left(3^{+}\right)$ [W.F. Mueller et al., PRC (2000)]

- Coupling of deformed shells:
$\left(1^{+}\right),\left(2^{+}\right),\left(2^{-}\right)$
[Liddick et al., PRC (2012)]
[F. Flavigny et al., PRC (2015)]

[D. Pauwels et al., PRC (2008)]

EXPERIMENTAL SETUP: BiGRIPS and EURICA

Radioactive Isotope Beam Factory (RIBF) @ RIKEN

> WAS3ABI

- 5 DSSSDs
- 60×40 strips
- $1 \mathrm{~mm}^{2}$ pitch
> EURICA
- 12 HPGe clusters
- 84 crystals
- 11\% eff @ 662 keV

- 1 mm thick

(b) View from 120 degrees

DAQ for decay spectroscopy experiments

β decay of neutron-rich $\mathrm{A}=70$ isobars

[G. Benzoni et al., PLB (2015)]

Deformation confirmed in Fe isotopic chain up to $\mathrm{N}=44$ and good comparison with shell-model calculations by group in Naples
[L. Coraggio et al., PRC 89, 024319 (2014)]

β decay ${ }^{70} \mathrm{Fe} \rightarrow{ }^{70} \mathrm{Co} \rightarrow{ }^{70} \mathrm{Ni}$

* Two long-lived β-decaying states at high and low spins in ${ }^{70} \mathrm{Co}$
* Low-spin β-decaying state in ${ }^{70} \mathrm{Co}$ isolated via the β decay of ${ }^{70} \mathrm{Fe}$
* Selectively populate low-spin states in ${ }^{70} \mathrm{Ni}$

> Strong population of the states at
- 274 keV : logft = 4.45(13)
- 1696 keV : logft = 4.95(15)
$>$ Gamow-Teller transition $\Rightarrow \mathrm{J}^{\boldsymbol{T}}=1^{+}$

If spherical,

$>$ Low-lying levels: $\pi f_{7 / 2}{ }^{-1} \otimes \mathrm{vg}_{9 / 2}$ \Rightarrow Negative parity
$>1^{+}$state: $\mathrm{Tf}_{7 / 2}{ }^{-1} \otimes \mathrm{vf}_{5 / 2}{ }^{-1}$

$$
\Rightarrow \mathrm{E}_{\mathrm{x}} \sim 1 \mathrm{MeV}
$$

If deformed,

- Proton: 1/2-[321]
- Neutron: 1/2-[301], 3/2+[431]
$>$ Odd-odd $\Rightarrow \mathrm{K}^{\boldsymbol{+}}=\mathbf{0}^{+\boldsymbol{+}} \mathbf{1}^{\boldsymbol{+}}, \mathbf{2}^{\boldsymbol{+}}$

Low-lying $1+$ state at 274 keV

Evidence for a deformed configuration

β decay ${ }^{70} \mathrm{Fe} \rightarrow{ }^{70} \mathrm{Co}$

$>$ MCSM calculations: A3DA Hamiltonian $\& \mathrm{pf}+\mathrm{g}_{9 / 2}+\mathrm{d}_{5}$

β decay ${ }^{70} \mathrm{Fe} \rightarrow{ }^{70} \mathrm{Co}$

MCSM wave functions of the three 1^{+}states in ${ }^{70} \mathrm{Co}$
$>1^{+}{ }_{1,2}$: almost identical, involving multiple p-h excitations across the $Z=28$ and $\mathrm{N}=40$ gaps (Type-II shell evolution) \Rightarrow Largely prolate deformed shape
$>1^{+}{ }_{3}$: dominated by $\mathrm{Tf}_{7 / 2}{ }^{-1} \mathrm{vf}_{5 / 2}{ }^{-1} \mathrm{~g}_{9 / 2}{ }^{+4} \Rightarrow$ Near spherical shape

	logft (MCSM)	logft (exp.)
$1^{+}{ }_{1}$	7.9	$>5.4(3)$
$1^{+}{ }_{2}$	5.02	$>4.45(13)$

Despite very similar occupancies, there is a discrepancy in $\mathrm{B}(\mathrm{GT})$ (logft) between the $1^{+}{ }_{1}$ and $1^{+}{ }_{2}$ states

■ Difference in the Gamow-Teller matrix elements M(GT)
$>1^{+}{ }_{1}$: the main (positive) $\mathrm{vp}_{1 / 2} \rightarrow \pi p_{1 / 2}$ component almost canceled out by the other components
$>1^{+}{ }_{2}$: contribution of the $\mathrm{vp}_{1 / 2} \rightarrow \pi \mathrm{p}_{3 / 2}$ transition remains predominant

β decay ${ }^{70} \mathrm{Co}$ (low spin) $\rightarrow{ }^{70} \mathrm{Ni}$

- $\mathrm{MCSM} \Rightarrow$ Much higher population of $2^{+}{ }_{2}$ than $2^{+}{ }_{1}$
- Experiment \Rightarrow Slightly prefer to feed $2^{+}{ }_{2}$ than 2^{+}, but almost comparable

$>$ Significant population of levels at 6 MeV

low spin

MOTIVATION: Shell evolution in proton-rich A~70 nuclei

β decay ${ }^{70} \mathrm{Br}\left(\mathrm{T}=0, \mathrm{~J}^{\pi}=9^{+}\right) \rightarrow{ }^{70} \mathrm{Se}$

* Two long-lived β-decaying states
$\Rightarrow \quad \mathrm{T}=1, \mathrm{~J} \pi=0^{+}$
\square Superallowed β decay
$\Rightarrow \mathrm{T}=0, \mathrm{~J} \pi=9^{+}$
- Selective population of deformed structures

β decay ${ }^{70} \mathrm{Br}\left(\mathrm{T}=0, \mathrm{~J} \pi=9^{+}\right) \rightarrow{ }^{70} \mathrm{Se}$

* $T=0, J^{\pi}=9^{+}$state in ${ }^{70} \mathrm{Br}$ is predicted to be prolate deformed by both calculations
* Yrast 8^{+}state also predicted to be prolate deformed by both calculations
* Logft to the yrast 8+ states (logft~4.6) consistent with the observed logft=4.40(4) to the $\left(8^{+}{ }_{2}\right)$ level

β decay ${ }^{70} \mathrm{Br}\left(\mathrm{T}=0, \mathrm{~J} \pi=9^{+}\right) \rightarrow{ }^{70} \mathrm{Se}$

J. Ljungvall, PRL (2008)

Selective population of shapes in $A=70$ isobars

Summary and conclusions

* The β decay of exotic $\mathrm{A}=70$ nuclei and $\mathrm{g}_{9 / 2} \mathrm{Ni}$ isotopes has been exploited by the EURICA collaboration at RIBF (RIKEN) to investigate the nuclear properties of nuclei at both extremes of the chart of nuclides.
* On the neutron-rich side, evidence for the stabilization of prolate deformed structures in the ground states of ${ }^{70} \mathrm{Mn},{ }^{70} \mathrm{Fe}$, and ${ }^{70} \mathrm{Co}$ has been found. Shape coexistence in ${ }^{70} \mathrm{Co}$ and ${ }^{70} \mathrm{Ni}$ has been described in terms of "Type II" shell evolution, showing an excellent agreement between experimental results and theoretical predictions.
* On the proton-rich side, shape coexistence and mixing result in a complex interpretation of the low-energy spectrum of ${ }^{70} \mathrm{Se}$.
* First intruder deformed candidates have been presented for ${ }^{72} \mathrm{Ni}$ and ${ }^{74} \mathrm{Ni}$, with 4 and 6 neutrons in the g9/2 shell. The disagreement with the powerful predictions of the MCSM calculations suggest that the real first yrare states have not been studied in our beta-decay study

NP1112-RIBF80 collaboration

Decay properties of ${ }^{68,69,70} \mathrm{Mn}$: Probing collectivity up to $\mathrm{N}=44$ in Fe isotopic chain
G. Benzoni ${ }^{\mathrm{a}, *}$, A.I. Morales ${ }^{\mathrm{a}, \mathrm{b}}$, H. Watanabe ${ }^{\mathrm{c}, \mathrm{d}}$, S. Nishimura ${ }^{\mathrm{c}}$, L. Coraggio ${ }^{\mathrm{e}}$, N. Itaco ${ }^{\mathrm{e}, \mathrm{f}}$, A. Gargano ${ }^{\text {e }}$, F. Browne ${ }^{\mathrm{g}, \mathrm{c}}$, R. Daido ${ }^{\text {h }}$, P. Doornenbal ${ }^{\text {c }}$, Y. Fang ${ }^{\text {h }}$, G. Lorusso $^{\text {c }}$, Z. Patel ${ }^{\mathrm{i}, \mathrm{c}}$, $^{\text {, }}$
S. Rice ${ }^{\mathrm{i}, \mathrm{c}}$, L. Sinclair ${ }^{\mathrm{j}, \mathrm{c}}$, P.-A. Söderström ${ }^{\mathrm{c}}$, T. Sumikama ${ }^{\text {k }}$, J. Wu^{c}, Z.Y. Xu ${ }^{\mathrm{l}, \mathrm{c}}$,
R. Yokoyama ${ }^{m}$, H. Baba $^{\text {c }}$, R. Avigo ${ }^{\text {a,b }}$, F.L. Bello Garrote ${ }^{\mathrm{n}}$, N. Blasi ${ }^{\text {a }}$, A. Bracco ${ }^{\text {a,b }}$,
F. Camera ${ }^{\text {a,b }}$, S. Ceruti ${ }^{\mathrm{a}, \mathrm{b}}$, F.C.L. Crespi ${ }^{\mathrm{a}, \mathrm{b}}$, G. de Angelis ${ }^{\circ}$, M.-C. Delattre ${ }^{\mathrm{P}}$, Zs. Dombradi ${ }^{\mathrm{q}}$,
A. Gottardo ${ }^{0}$, T. Isobe ${ }^{\text {C }}$, I. Kuti ${ }^{\text {q }}$, K. Matsui ${ }^{\text {l }}$, B. Melon ${ }^{\text {r }}$, D. Mengoni ${ }^{\text {s,t }}$, T. Miyazaki ${ }^{1}$,
V. Modamio-Hoybjor ${ }^{\circ}$, S. Momiyama ${ }^{1}$, D.R. Napoli ${ }^{\circ}$, M. Niikura ${ }^{1}$, R. Orlandi ${ }^{\mathrm{u}, \mathrm{v}}$,
H. Sakurai ${ }^{\text {C, }}$, E. Sahin ${ }^{\text {n }}$, D. Sohler ${ }^{\text {q }}$, R. Taniuchi ${ }^{1}$, J. Taprogge ${ }^{\text {w,x }}$, Zs. Vajta ${ }^{\text {q }}$,
J.J. Valiente-Dobón ${ }^{\circ}$, O. Wieland ${ }^{\text {a }}$, M. Yalcinkaya ${ }^{\text {y }}$

Type II shell evolution in $A=70$ isobars from the $N \geq 40$ island of inversion
A.I. Morales ${ }^{\mathrm{a}, \mathrm{b}, *}$, G. Benzoni ${ }^{\text {a }}$, H. Watanabe ${ }^{\mathrm{c}, \mathrm{d}}, \mathrm{Y}$. Tsunoda $^{\mathrm{e}}$, T. Otsuka ${ }^{\mathrm{f}, \mathrm{g}, \mathrm{h}}$, S. Nishimura ${ }^{\text {d }}$, F. Browne ${ }^{\mathrm{i}, \mathrm{d}}$, R. Daido ${ }^{\mathrm{j}}$, P. Doornenbal ${ }^{\mathrm{d}}$, Y. Fang ${ }^{\mathrm{j}}$, G. Lorusso ${ }^{\mathrm{d}}$, Z. Patel ${ }^{\mathrm{k}, \mathrm{d}}$, S. Rice ${ }^{\mathrm{k}, \mathrm{d}}$,
L. Sinclair ${ }^{1, \mathrm{~d}}$, P.-A. Söderström ${ }^{\text {d }}$, T. Sumikama ${ }^{\text {m }}$, J. Wu ${ }^{\text {d }}$, Z.Y. Xu ${ }^{\text {f,d }}$, A. Yagi ${ }^{\text {j }}$, R. Yokoyama ${ }^{\text {f }}$,
H. Baba ${ }^{\text {d }}$, R. Avigo ${ }^{\text {a,b }}$, F.L. Bello Garrote ${ }^{\mathrm{n}}$, N. Blasi ${ }^{\text {a }}$, A. Bracco ${ }^{\text {a,b }}$, F. Camera ${ }^{\text {a,b }}$,
S. Ceruti ${ }^{\text {a,b }}$, F.C.L. Crespi ${ }^{\text {a,b }}$, G. de Angelis ${ }^{0}$, M.-C. Delattre ${ }^{\mathrm{P}}$, Zs. Dombradi ${ }^{\text {q }}$, A. Gottardo ${ }^{\circ}$,
T. Isobe ${ }^{\text {d }}$, I. Kojouharov ${ }^{\text {r }}$, N. Kurz ${ }^{\text {r }}$, I. Kuti ${ }^{\text {q }}$, K. Matsui ${ }^{\text {f }}$, B. Melon ${ }^{\text {s }}$, D. Mengoni ${ }^{\text {t, }}{ }^{\mathrm{u}}$,
T. Miyazaki ${ }^{\mathrm{f}}$, V. Modamio-Hoybjor ${ }^{\circ}$, S. Momiyama ${ }^{\mathrm{f}}$, D.R. Napoli ${ }^{\circ}$, M. Niikura ${ }^{\mathrm{f}}$,
R. Orlandi ${ }^{\text {h, }, ~}$, H. Sakurai ${ }^{\text {d,f }}$, E. Sahin ${ }^{\mathrm{n}}$, D. Sohler ${ }^{\mathrm{q}}$, H. Schaffner ${ }^{\mathrm{r}}$, R. Taniuchi ${ }^{\mathrm{f}}$,
J. Taprogge ${ }^{\text {w,x }}$, Zs. Vajta ${ }^{\text {q }}$, J.J. Valiente-Dobón ${ }^{\circ}$, O. Wieland ${ }^{\text {a }}$, M. Yalcinkaya ${ }^{\text {y }}$

NP1112-RIBF93 collaboration

Simultaneous investigation of the $\mathbf{T}=1\left(\mathrm{~J}^{\pi}=0^{+}\right)$and $\mathbf{T}=0\left(\mathrm{~J}^{\pi}=9^{+}\right) \beta$ decays in ${ }^{70} \mathrm{Br}$ VICS (Veny Impontant Collabonatons) F. Molina, ${ }^{7}$ G. de Angelis, ${ }^{8}$ F. Recchia,,${ }^{9}{ }^{10}$ G. Kiss, ${ }^{6}$ V. H. Phong,,${ }^{6,11}$ J. Wu, ${ }^{6}$ D. Nishimura, ${ }^{12}$ H. Oikawa, ${ }^{13}$ T. Goigoux, ${ }^{14}$ J. Giovinazzo, ${ }^{14}$ P. Ascher, ${ }^{14}$ J. Agramunt, ${ }^{1}$ D.S. Ahn, ${ }^{6}$ H. Baba, ${ }^{6}$ B. Blank, ${ }^{14}$ C. Borcea, ${ }^{15}$

NP1112-RIBF80: G. Benzoni, H. Watanabe, L. Coraggio, N. Itaco A. Gargano, T. Otsuka, and Y. Tsunoda

NP1112-RIBF93: A. Algora, B. Rubio, and K. Kaneko

THANK YOU VERY MUCH FOR YOUR ATTENTION

