NUSTAR week 2017, Ljubljana, Slovenia

STATUS OF JYFLTRAP AND RECENT MEASUREMENTS

Tommi Eronen

University of Jyväskylä

Refresher

- JYFLTRAP is a double Penning trap at IGISOL-4
- IGISOL is Ion Guide ISOL at University Jyväskylä accelerator laboratory
 - Stopping reaction products in gas
 - No chemical selectivity

JYVÄSKYLÄN YLIOPISTO IGISOL-4 FACILITY LAYOUT

JYFLTRAP

Buncher

- 2 Penning traps
 - Purification trap
 - Precision trap

buncher

30 keV

Beams available

- Before buncher: Stable Rb-Cs-K simultaneously
- Offline ion source upstairs:
 - Stable Rb-Cs-K
 - Electric discharge IS (any metal, powder ...) "spark source"
- Online
 - U, Th fission using protons or deuterons
 - Light ion fusion
 - Fusion evaporation

Recent upgrades

Summer 2016: Finished realignment

- Added silicon detectors for beta detection
- Transmission improvements up to 40% transmission from before the buncher after the trap

Summer 2017: Installation of 2D MCP detector

Enable phase-sensitive detection (PI-ICR method)

PI-ICR at JYFLTRAP

Detector installed in June 2017

JYFL MR-TOF

Based and simulated using Uni. Greifswald device

- R. Wolf et al. **IJMS** 349, 123 (2013)
- In-Trap lift electrode

JYFL MR-TOF

- Mass separator / spectrometer
- Faster cycle time than in Penning trap
 - Smaller needle from the haystack of ions
- Mass measurements with modest precision

JYFL MR-TOF

JYFL Buncher modification

- Low energy spread (< 1 eV)
- (This is also ok for injection to Penning traps)
- MR-TOF needs
 - Good time focus (< 100 ns)
- < 1 eV, < 100 ns can't be simultaneously satisfied

Simulations M. Schuh **MPIK Heidelberg**

Recent JYFLTRAP mass measurements

The mass of ⁵²Co for the IMME at A=52 and the rp process

Measured with JYFLTRAP: \checkmark ⁵²Co, ⁵²Co^m

✓ ⁵²Fe, ⁵²Fe^m

✓ ⁵²Mn

The first Penning trap mass measurement of ⁵²Co!

- Short-lived: T_{1/2}=104(7) ms!
- ⁵⁴Fe(p,3n)⁵²Co @ 50 MeV: σ≈3 μb (TALYS)

Co 55
17.54 h
1.5
09 <mark>.</mark>
Fe 54
5.845
2.3 ,α 1Ε-5
Mn 53
3.7·10 ⁶ a
γ 70
Cr 52
83.789

⁵²Co: comparison to other works

Differs from the CSRe storage-ring IMS results X. Xu et al., PRL 117, 182503 (2016)

Spectroscopy: JYFLTRAP:

Ex= 372(3) keV Ex= 374(13) keV

⁵²Co results: decay scheme for ⁵²Ni

Earlier: beta decay studies of ^{52}Ni suggested that the T=2, 0⁺ IAS decays both via βp and $\beta \gamma$

C. Dossat et al., Nucl. Phys. A 792 (2007) 18; S. Orrigo et al., PRC 93, 044336 (2016)

D. A. Nesterenko, et al., J. Phys. G: Nucl. Part. Phys. 44 (2017) 065103

Cubic coefficients d:

⁵²Co and the rp process

⁵²Co more bound, ⁵³Ni less proton-bound than predicted by the AME12

D. A. Nesterenko et al., J. Phys. G: Nucl. Part. Phys. 44 (2017) 065103

Neutron rich rare-earth masses

M. Vilen, J. Kelly, A. Kankainen et al., nuclear astrophysics University of Jyväskylä University of Notre Dame

FIG. 1. Decay scheme for the A = 96 triplet showing the energy position of 96 Zr with respect to its neighbors 96 Nb and 96 Mo. The *Q* values are from this work (all energies are in keV).

ZR-96 SINGLE AND DOUBLE BETA DECAY Q-VALUES

D.Frekers, M. Alanssari University of Münster

Competition between β & $\beta\beta$ decay of ⁹⁶Zr

JYVÄSKYLÄN YLIOPISTO M. Alanssari et al., Phys. Rev. Lett. **116** 072501 (2016)

5.10.2017_{JYVÄSKYLÄN YLIOPISTO}

GALLIUM-71 ANOMALY

GALLEX/ SAGE Calibration results with ⁵¹Cr v source

(ratio= observed/predicted)

		experiment	source	ratio
	500 keV 3/2-	GALLEX	⁵¹ Cr-1	0.95 ± 0.11
	175 keV 5/2- 0 keV 1/2-	GALLEX	⁵¹ Cr-2	0.81 ± 0.11
3/2-		SAGE	⁵¹ Cr	0.95 ± 0.12
7	⁷¹ Ga ⁷¹ Ge	SAGE	³⁷ Ar	0.79 ± 0.10
The second	Gec -232	Average	³⁷ Ar, ⁵¹ Cr	0.87 ± 0.05

- The anomaly could be caused by:
 - wrong transition strength from 71 Ga \rightarrow 71 Ge
 - wrong ⁷¹Ga / ⁷¹Ge Q-value (from mass meusurements)
 - effect of sterile neutrino
 - wrong calibration measurement

Q-value effects on ⁷¹Ga

Solves anomaly?

NO

- Q=232.69 keV J. Bahcall, used in calculation
- Q =233.5(12) keV ⁷¹Ga-⁷¹Ge TITAN-TRIUMF NO

- Frekers et al, Phys. Lett. B 722 (2013) 223

- How about ⁵¹Cr Q-value (⁵¹Cr used in calibration)?
 - 751.86(55) keV ⁵¹Cr-⁵¹V TITAN-TRIUMF
 - T. D Macdonald et al, Phys. Rev. C 89 (2014) 044318
- Check ⁷¹Ga-⁷¹Ge with JYFLTRAP
 - 232.443(93) keV, x10 more precise than TITAN-TRIUMF
 M. Alanssari et al., IJMS 406, 1 (2016)

25-750-25 ms Ramsey pattern

ANOMALY REMAINS

$2\nu\beta\beta$, 0ν ECEC Q-values

Almost all cases already studied..

- $-2v\beta\beta$, $0v\beta\beta$ endpoints
- 0vECEC Search for resonant enhancement
- Mainly measured by SHIPTRAP but most other traps have contributed as well

Ordinary (highly forbidden) β and EC Qvalues

- Ground-state-to-ground state decays:
 - Direct neutrino mass probes, e.g. tritium, ¹⁶³Ho
- Ground-state-to-excited-state decays
 - Low Q-values of highly forbidden decays

Low Q-value

- For example EC Q-value of ¹⁶³Ho ($T_{1/2} \approx 4600$ years)
 - Ground state to ground state decay
 - Q-value from Penning trap mass spectroscopy
 - Eliseev et al., PRL 115, 062501 (2015) [PI-ICR technique]
 - 30_{stat} + 15_{syst} eV precision

Ultralow Q-value nuclei

- Single β^{-} and EC capture decays
- Decay with very low Q-value to an excited state
- Bigger fraction of the Q-value in neutrino mass
- Search for "slightly positive" Q-value

Required experimental quantities

- Parent-daughter decay Q-value mass difference
 - From mass spectroscopy
- Daughter excited state excitation energy

Example: ¹¹⁵In decay

Cattadori et al. Nucl. Phys A 748, 333 (2005)

Q-values: JYFLTRAP 350(170) eV E. Wieslander, J. Suhonen, T. Eronen et al. PRL **103**, 122501 (2009) FSU-TRAP 155(24) eV B.J. Mount, M. Redshav, E.G. Myers, PRL **103**, 122502 (2009)

Precisions

The goal: Find "slightly positive Q-value" cases:

Phase 1: Coarse selection

Daughter state excitation energies < 100 eV

~100 eV gs-gs precision with Penning traps (TOF-ICR)

Phase 2: Finer selection

Daughter state excitation energies < 10 eV

- ~10-50 eV gs-gs precision with Penning traps (*PI-ICR*)
- Phase 3: Ultimate
 - Push to eV-level with non-destructive Penning trap mass measurement techniques
 - E.g. with PENTATRAP in MPIK, Heidelberg

Parent and daughter production

■ For example ⁷⁷As -> ⁷⁷Se Q-value

- Parent: ⁷⁶Ge(*d*,*n*)⁷⁷As @ 7 MeV
- Daughter: stable selenium exists as a contaminant

BOTH available simultaneously

728; 219; 634 634	β ⁺ 1,7 γ 287; 141	lγ 45 e ⁻ σ _{n, p} 224	lγ 106 297 e g	β ⁺ 2,6 γ 614	σ 2,5 + lγ 207 8,3	lγ 37 e ⁻ 616; 666
Se 73 39 m 7,1 h	Se 74 0,89	Se 75 119,64 d	Se 76 9,36	Se 77 17,5 s 7,63	Se 78 23,78	Se 79 3,9 m 4,8 · 10 ⁵ a
y 67; 1.7 254; 84; y 361; 393 67	σ 46	γ265; 136; 280; 121; 401 σ 330	σ 22 + 63	ly 162 or 42	σ 0,38 + 0,05	lγ 96 β 0,2 e no γ β ⁻ g
As 72 26,0 h	As 73 80,3 d	As 74 17,77 d	As 75 100	As 76 26,4 h	As 77 38,8 h	As 78 1,5 h
β ⁺ 2,5; 3,3 γ 834; 630	e noβ+ γ53 e ⁻	^ε β ⁺ 0,9; 1,5 β ⁻ 1,4 γ 596; 635	or 4,3	β 3,0 γ 559; 657; 🐞 1216	$\beta^{-} 0.7$ $\gamma 239; 521;$ 250 g	β744 γ4; 655 309
Ge 71 11,43 d	Ge 72 27,66	Ge 73 7,73	Ge 74 35,94	Ge 75 47 s 83 m	Ge 76 7,44	Ge 77
ε ΠΟ γ	or 0,9	σ 15	σ 0,14 + 0,28	Ιγ 140 e β ⁻ β ⁻ 1,2 β ⁻ γ 265; γ (280) 199	1,53 · 10 ² ' a σ ³⁰ + 0,06	$\begin{array}{c} \beta^{-} 2,9 \\ \gamma^{-} 264; \\ \gamma^{-} 216 \\ \gamma^{-} 216; \\ \gamma^{-} 160 \end{array} \qquad $
Ga 70 21,15 m	Ga 71 39,892	Ga 72 14,1 h	Ga 73 4,86 h	Ga 74 9,5 s 8,1 m	Ga 75 2,1 m	Ga 76 32,6 s
3 [—] 1,7 ∉ у (1040; 176)	σ4,7	β 1,0; 3,2 γ 834; 2202; 630; 2508	β 1,2; 1,5 γ297; 53; 326 e	β ⁻ 2,6; 4,9 γ 596; 2354; β ⁻ ? 608	β 3,3 γ 253; 575 g	β 5,9 γ 563; 546; 1108

Free-space cyclotron frequency

Mass measurements through

G. Gabrielse, Int. J. Mass. Spec. 279 (2009) 107-112

Time-of-flight ion cyclotron resonance (TOF-ICR) method for mass measurements

Phase imaging ion cyclotron resonance (PI-ICR) method for mass measurements

PI-ICR method

- Novel Penning trap mass measurement technique
- Developed by Sergey Eliseev, MPIK Heidelberg at SHIPTRAP GSI
- Faster by 40x

PI-ICR scheme for mass measurements

Delay 1 and delay 2 are fixed with two function generators.

PI-ICR results

- SHIPTRAP at GSI: ¹⁶³Ho-¹⁶³Dy Q-value with uncertainty 30_{stat} + 15_{syst} eV
 - Eliseev et al., PRL 115, 062501 (2015)
- JYFLTRAP test measurement ⁸⁵Rb-⁸⁷Rb
 - 52 eV precision (preliminary, to be tightened)
 - This is better than 10⁻⁹!

In general: few ten eV precision available (few x 10⁻¹⁰ frequency ratio precision)

Post-trap decay spectroscopy

- JYFLTRAP used for several decay spec experiments to provide monoisotopic/-meric beam
- Using purification trap (R up to 10⁵)
- Ramsey cleaning $(R > 10^6)$
 - Not always so suitable for decay spec
 - If too small wanted/unwanted ratio
 - Recooling in trap1 wastes time
- New: Phase-dependent cleaning

University of Warsaw Ge array

TASISPEC at JYFL 2017

¹²⁷Cd Aug-17

Future post-trap decay spectroscopy

MR-TOF + Penning trap

- Preparation of "big" bunches
- E.g. superallowed beta decay $T_{1/2}$ and BR
- Phase-dependent cleaning
 - Separation of ~50 keV isomers
 - Commissioning on-going

Phase dependent cleaning

- Isomerically clean beams available with unprecedented resolving power!
- Phase-sensitive cleaning
 - For A/q = 100
 - 50 keV isomer
 - 45 deg phase difference
 - Need 200 ms

$$-\frac{M}{\Delta M} \approx 2 \times 10^6$$

g.s. of ¹²⁷Cd delivered to TASISPEC

Final remarks

- JYFLTRAP has a very comprehensive physics program
- Mass measurements
 - Astrophysics
 - Fundamental physics
 - Nuclear structure
- Post-trap spectroscopy
 - Integral part of activities
 - Collaboration with many outside groups

Acknowledgments

L. Canete T. Eronen S. Geldhof R. de Groote A. Jokinen A. Kankainen I.D. Moore **D. Nesterenko** H. Penttilä I. Pohjolainen A. de Roubin M. Reponen S. Rinta-Antila A. Takkinen **M.** Vilen J. Äystö

Collaborators: A. Algora, A. Aprahamian, B. Blank, K. Blaum, M. Brodeur, A. Bruce, P. Campbell, B. Cheal, S. Eliseev, J.C. Hardy, J. Kurpeta, Y. Novikov, J.-L. Tain, S. Pomp, M. Schuh, D. Rudolph, ...

JYFL theory:

Thank you

for your

attention!

J. Dobaczewski, J. Suhonen

UNIVERSITY

MANCHESTER

The University of Manchester

UNIVERSITY OF VERPOOL

UPPSALA

UNIVERSITET

[±]UCL