Open heavy-flavour results from ALICE

Francesco Prino

ALICE

INFN – Sezione di Torino

for the ALICE Collaboration INEN

EMMI-RRTF workshop, GSI, July 18th 2016

Heavy-Ion Collisions

- Goal: study the properties of nuclear matter at extreme conditions of temperature and energy density
 - Transition to a state where quarks and gluons are deconfined (Quark Gluon Plasma, QGP)
 - ✓ From lattice QCD: $T_c \approx 145-160 \text{ MeV} \rightarrow \varepsilon_c \approx 0.5 \text{ GeV/fm}^3$

Bazavov et al, PRD90 (2014) 094503
 Borsanyi et al, JHEP 1009 (2010) 073

Heavy flavours (HF) in heavy-ion

Charm and beauty quarks: unique probes of the medium

- Produced at the very early stage of the collision in partonic scattering processes with large Q²
 - ✓ pQCD can be used to calculate initial cross sections
- Small rate of thermal production in the QGP ($m_{c,b} >> T$)
- → Large mass, short formation time

Experience the entire evolution of the medium

Interactions with medium constituents don't change the flavor, but can modify the phase-space distribution of heavy quarks

Heavy flavours in ALICE

Charm production in pp collisions

 HF production cross sections in pp collisions described by pQCD calculations within uncertainties

Cacciari et al., JHEP 1210 (2012) 137

GM-VFNS
 GM-VFNS

📖 Kniehl et al., EPJ C72 (2012) 2082

→ LO k_T-factorization
 →

Maciula, Szczurek, PRD 87 (2013) 094022

D-meson cross-section on the upper side of the FONLL uncertainty band, as at lower \sqrt{s}

ALICE, JHEP01 (2012) 128 ALICE, JHEP07 (2012) 191 ALICE, PLB718 (2012) 279 ALICE, arXiv:1605.07569 5

Beauty production in pp collisions

- HF production cross sections in pp collisions described by pQCD calculations within uncertainties

Cacciari et al., JHEP 1210 (2012) 137

GM-VFNS
 GM-VFNS

🛄 Kniehl et al., EPJ C72 (2012) 2082

➡ LO k_T-factorization

Description Active Acti

ALICE, PRD 86 (2012) 112007 ALICE, PLB 738 (2014) 97

Beauty cross-section well described by FONLL as at lower \sqrt{s}

ALICE, JHEP 1211 (2012) 065
 CMS, EPJ C71 (2011) 1575
 LHCb, EPJ C71 (2011) 1645

HF production cross section

 Total charm and beauty production cross sections described by NLO pQCD calculations within uncertainties

Charm on the upper edge of the theoretical uncertainty band at all collision energies

Nuclear modification factor

Production of HF in nuclear collisions

Expected to scale with the number of nucleonnucleon collisions N_{coll} (binary scaling)

Observable: nuclear modification factor

 $R_{AA}(p_T) = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA}/dp_T}{dN_{pp}/dp_T} \sim \frac{QCD \text{ medium}}{QCD \text{ vacuum}}$

• If no nuclear effects are present $\rightarrow R_{AA}=1$

 \checkmark via elastic collisions and gluon radiation

Collective flow

➡In-medium hadronization

Cold nuclear matter effects: p-Pb collisions

GOAL: assess the role of cold nuclear matter (CNM) effects

⇒Initial-state effects:

- ✓ Nuclear modification of the PDFs → shadowing at low Bjorken-x is the dominant effect at LHC energies
- ✓ Initial-state energy loss
- ✓ k_T broadening

 → due to multiple collisions of the parton before the hard scattering

⇒ Final-state effects

- ✓ Final-state energy loss
- Interactions with the particles produced in the collision
 - \rightarrow collective expansion?
 - \rightarrow *Mini* QGP?
- Crucial for interpretation of Pb-Pb results

• R_{pPb} of HF decay leptons:

 \Rightarrow consistent with unity at mid- and forward rapidity \Rightarrow slightly larger than unity at backward rapidity for 2< p_T < 4 GeV/c

 Described within uncertainties by models including cold nuclear matter effects

D mesons in p-Pb collisions

 Charm production in p-Pb collisions described by pQCD calculations including nuclear PDFs and/or other CNM effects

-> No indication of significant cold nuclear matter effects on charm production

More charm in p-Pb collisions

3

QGP p-Pb collisions ?

 Unexpected results from light-flavour hadrons qualitatively resembling the collective behaviour observed in Pb-Pb collisions

Also in the charm sector?

 Data on D-meson R_{pPb} compared to Langevin transport models assuming QGP formation in p-Pb collisions

 \Rightarrow Current data disfavour a suppression >15% at high $p_{\rm T}$

ALICE, arXiv:1605.07569

Hot and dense medium effects: Pb-Pb collisions

- Interaction of heavy quarks with the QCD medium constituents
 - ⇒Energy loss:
 - Elastic collisions with the medium constituents (-> collisional energy loss)
 - ✓ Gluon radiation
 - Momentum gain due to the "push" from medium collective expansion
 - ✓ Do low-p_T heavy quarks thermalize in the medium?
 - ⇒In-medium hadronization
 - Hadronization via (re)combination of the charm quark with a (light) quark from the medium ?

D mesons in Pb-Pb collisions

- Strong suppression of prompt D-meson yield in central Pb-Pb collisions
 - ♀up to a factor of 5 at p_T≈10 GeV/c

- Hint for less suppression of D_s⁺ than non-strange D at low p_T
 - Expected if recombination plays a role in charm hadronization

Kuznetsova, Rafelski, EPJ C 51 (2007) 113
 He, Fries, Rapp, PLB 735 (2014) 445
 15

D-meson R_{AA} vs. models

 Expectation from pQCD+nuclear PDFs
 (no QGP medium)

> Fails in describing the Pb-Pb data

- Models including interactions of charm quarks with medium constituents
 - describe qualitatively (and in some cases quantitatively) the data

The suppression is a final-state effect -> due to interactions with the hot and dense medium

HF decay lepton R_{AA}

- Indication for beauty decay electron yield suppression in central Pb-Pb collisions for $p_T>3$ GeV/c
- Production of heavy-flavour decay muons (dominated by beauty for p_T>4-5 GeV/c) suppressed in Pb-Pb collisions
 ⇒ Suppression described by models including energy loss in QGP

-> substantial energy loss of beauty quarks in the medium

Heavy-quark energy loss

In-medium energy loss \Delta E depends on:

Properties of the medium (density, temperature, mean free path, ...)
 -> transport coefficients

 \Rightarrow Path length in the medium (L)

Properties of the parton (colour charge, mass) traversing the medium:

-> $C_R = 3$ for gluons -> $C_R = 4/3$ for quarks

✓ Mass of the quark

-> dead-cone effect

• Expectation: $\Delta E_{g} > \Delta E_{u,d,s} > \Delta E_{c} > \Delta E_{b}$

Is this reflected in a R_{AA} hierarchy: $R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$?

- Expectation: $\Delta E_{g} > \Delta E_{u,d,s} > \Delta E_{c} > \Delta E_{b}$
- Is this reflected in a R_{AA} hierarchy: $R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$

-> consistent with prediction of quark-mass dependent energy loss ²⁰

Azimuthal anisotropy

- Initial geometrical anisotropy in non-central heavy-ion collisions
 - The impact parameter selects a preferred direction in the transverse plane

- Re-scatterings among produced particles convert the initial geometrical anisotropy into an observable momentum anisotropy
 ⇒ Collective motion (flow) of the "bulk" (low p_T)
- In addition, path-length dependent energy loss in an almond-shaped medium induces an asymmetry in momentum space

 Longer path length -> larger energy loss for particles exiting out-of-plane
- Observable: Fourier coefficients of the particle azimuthal distribution, in particular 2^{nd} harmonic v_2 , called **elliptic flow**

$$\frac{dN}{d\varphi} = \frac{N_0}{2\pi} \left\{ 1 + 2v_2 \cos\left[2(\varphi - \Psi_{RP})\right] + \dots \right\} \qquad v_2 = \left\langle \cos\left[2(\varphi - \Psi_{RP})\right] \right\rangle$$

Positive v₂ of leptons from HF decays at low/intermediate p_T
 ⇒ Similar v₂ at mid and forward rapidity
 ⇒ Elliptic flow increases from central to (semi)peripheral collisions
 ✓ As expected from the evolution of initial geometrical anisotropy with centrality

Interactions with the medium constituents transfer to charm quarks information on the azimuthal anisotropy of the system
 ALICE, arXiv:1606.00321
 ALICE, PLB753 (2016) 41

D-meson R_{AA} and v₂ vs. models

The simultaneous description of D-meson R_{AA} and v₂ is a challenge for theoretical models

➡ Data have the potential to constrain the models

ALICE, PRL 111 (2013) 102301

📖 ALICE, PRC90 (2014) 034904

Where we are...

pp collisions

→ Production cross section described by pQCD calculations

✓ *HF* are a calibrated probe of the medium created in heavy-ion collisions

Pb-Pb collisions

Substantial modification of D and B meson p_T spectra

✓ Potential to <u>constrain energy loss mechanisms</u> and medium <u>transport coefficients</u> ⇒ Indication for $R_{\Delta\Delta}^{\text{beauty}} > R_{\Delta\Delta}^{\text{charm}}$

✓ Consistent with the predicted <u>quark-mass dependent energy loss</u>

→ Positive D-meson elliptic flow

✓ Suggests that charm quarks take part in the <u>collective expansion</u> of the medium

 \Rightarrow Hint for hadronization via **recombination** from the yield of D_s mesons

p-Pb collisions

➡ Original motivation: a control experiment

- ✓ Confirm that D and B meson suppression in Pb-Pb at high p_T is a final-state effect
- ✓ Small cold nuclear matter effects at mid-rapidity

But also unexpected results (in light-flavour sector) qualitatively resembling the collective behaviour observed in Pb-Pb collisions

... and what next

• Pb-Pb: larger samples at higher energy

 \Rightarrow Improved precision + extended p_{T} coverage

- ✓ Quantitatively constrain energy loss models
- ✓ Study whether charm and beauty quarks thermalize in the medium
- \Rightarrow HF hadrochemistry: D_s and baryon-to-meson ratios
 - ✓ Constrain the hadronization mechanism (recombination/fragmentation)

• p-Pb and pp

Improved precision on pp reference and assessment of CNM effects

✓ Crucial role in the interpretation of Pb-Pb results

→ Production vs. multiplicity/centrality

Collectivity in high multiplicity pp and p-Pb collisions in the HF sector?

Major step towards high-precision measurements in the HF sector with the detector upgrades after Run2

Beauty in p-Pb collisions

*R*_{pPb} of beauty-decay electrons (low *p*_T), B mesons (10<*p*_T<60 GeV/*c*) and b-jets (high *p*_T) consistent with unity

-> No indication of significant cold nuclear matter effects on beauty production

D mesons and J/w vs. multiplicity

- Per-event yield of D mesons and J/ψ increases with increasing charged-particle multiplicity
 ⇒ Similar trend in different D meson pT bins
 - ➡ Described by models including MPIs

ALICE, PLB 712 (2012) 165

ALICE, JHEP 1509 (2015) 148

28

D-meson R_{AA}: LHC vs. RHIC

□ ALICE, JHEP1603 (2016) 081 □ STAR, PRL 113 (2014) 142301

 D-meson R_{AA} factor at √s_{NN}=0.2 and 2.76 TeV
 ⇒ Similar R_{AA} for p_T >3 GeV/c
 ⇒ Maybe different trend at lower p_T
 Many effects are different at different collision energies:
 ⇒ Different p_T shape of produced

- charm quarks / pp reference
- ➡ Different shadowing
- ➡ Different radial flow
- Different medium density and energy loss
- Some theoretical models can describe both measurements reasonably well

• D-meson and pion R_{AA} compatible within uncertainties

• Described by models including

 \Rightarrow energy loss hierarchy ($\Delta E_{g} > \Delta E_{u,d,s} > \Delta E_{c}$)

 \Rightarrow different p_{T} shapes of produced partons

different fragmentation functions of gluons, light and charm quarks

📖 ALICE, JHEP1603 (2016) 081