Heavy Flavor Jet and Meson Measurements from CMS

Yen-Jie Lee Massachusetts Institute of Technology (For the CMS collaboration)

EMMI RRTF: Extraction of heavy-flavor transport coefficients in QCD Matter GSI, Germany 18-22 July, 2016

Yen-Jie Lee (MIT)

Flavor Dependence of Parton Energy Loss

- From QCD
 - Color charge:
 - E_{loss} in gluons > E_{loss} in quarks
 - Kinematics: "Dead cone effect":
 E_{loss} in quarks > E_{loss} in heavy quarks

Heavy Quark vs. Light Quark: Changing the ratio of collisional and radiative energy loss

Heavy flavor hadron (and jet) analyses cover a wide kinematics range \rightarrow Suppression of induced radiation at low p_T and the disappearance of this effect at high p_T

Heavy Flavor Measurements

The CMS Detector

Yen-Jie Lee (MIT)

The CMS Detector

Charged Track Impact Parameter Resolution in pp

Track impact parameter resolution: $\circ d_0$: ~80 µm @ 1 GeV/c, ~20 µm @ 10 GeV/c $\circ z_0$: ~100 µm @ 1 GeV/c, ~40 µm @ 10 GeV/c

Results from pp and Run I Heavy Ion Data

CMS Experiment at LHC, CERN Data recorded: Mon Nov 8 11:30:53 2010 CEST Run/Event: 150431 / 630470 Lumi section: 173

b-Jet and c-Jet R_{pA} at 5.02 TeV

Yen-Jie Lee (MIT)

EMMI RRTF Meeting

B Meson Mass Spectra in pp and pPb

Yen-Jie Lee (MIT)

Results from pp @ 7 and 13 TeV

Transverse momentum spectra

Rapidity distribution

- pp at 7 TeV and 13 TeV are in agreement with FONLL within the quoted uncertainties
- The central values of 7 TeV data match better with FONLL center value than 13 TeV
- PYTHIA doesn't give a perfect description of the $B^+\,p_T$ spectra

Nuclear Modification Factor : R_{pA}FONLL

- R_{pA}^{FONLL} is compatible with unity within given uncertainties for three B mesons
- pp reference data at 5 TeV can significantly lower the systematical uncertainty

EMMI RRTF Meeting

b-Jet R_{AA}

- First measurement of b-jet R_{AA}!!
- Evidence of b-jet suppression in PbPb collisions
- Suppression favors pQCD model with stronger jet-medium coupling

EMMI RRTF Meeting

Flavor Dependence of R_{AA} in PbPb at 2.76 TeV

CMS Experiment at LHC, CERN Data recorded: Wed Nov 25 12:21:51 2015 CET Run/Event: 262548 / 14582169 Lumi section: 309

Run II analysis

2015 pp @ 13 TeV

2015 pp & PbPb @ 5 TeV

Online D⁰ triggers

 Level-1 (L1) jet algorithm with online background subtraction Track seed p_T cut applied:

- $p_T > 2 \text{ GeV for pp}$
- $p_T > 8 \text{ GeV for PbPb}$

- D⁰ online reconstruction
- loose selection based on D⁰ vertex displacement

Performance of D⁰ triggers

pp efficiency reaches 100% above the $D^0 p_T$ trigger threshold

 \rightarrow PbPb trigger efficiency is better than 90%, evaluated by minimumbias data and jet triggers

D⁰ mass spectra in pp and PbPb at 5.02 TeV

D⁰ Signal to Background Ratio Comparison

0-10% (No K-π ID)

Yen-Jie Lee (MIT)

EMMI RRTF Meeting

$b \rightarrow D^0$ feed-down subtraction in pp and PbPb collisions

- Data-driven extraction in heavy-ion collision with DCA
- Prompt D⁰ fraction extracted from *data* is 70-90% in pp and PbPb
- Extract non-prompt D⁰ spectra: complementary to direct B meson reconstruction and non-prompt J/ψ analysis

D^0 p_T-differential cross section in pp at 5.02 TeV

CMS-PAS-HIN-16-001

- First measurement of pp D⁰ cross section at 5.02 TeV using 2 billion minimum bias and D⁰ triggers
- D⁰ p_T coverage from 2 to 100 GeV/c in |y|<1.0
- Results are consistent with the FONLL calculations. Similar to that was observed in B⁺ analyses.

20

Yen-Jie Lee (MIT)

Prompt D⁰ R_{AA} in PbPb at 5.02 TeV

0-100%

CMS-PAS-HIN-16-001 0-10% Central

- The first D⁰ R_{AA} measurement in PbPb at 5.02 TeV!
- Mind the 12% normalization uncertainty from Lumi (will go down to a few % soon)
- D⁰ production is strongly suppressed (by a factor of ~ 5) at ~10 GeV
- At high $p_T > 10$ GeV: D⁰ R_{AA} increases as a function of D⁰ p_T

D⁰ and charged particle R_{AA} in 0-100%

0-100% CMS-PAS-HIN-16-001 CMS-PAS-HIN-15-015 0-10% Central

- Compared to the first measurement of charged particle R_{AA} at 5.02 TeV cover a very wide kinematic range (up to p_T ~ 300 GeV)
- Suppression patterns are very similar between D⁰ and inclusive charged particles!
- Less D^0 suppression than inclusive hadron at low p_T ?

D⁰ R_{AA} vs predictions

- Predictions before data capture the observed structure at low D0 p_T!
- PHSD: Need to include shadowing effects to describe the data at low p_T
- **PHSD** (Parton-Hadron-String Dynamics model[2])
- S.Cao et al. (Linearized Boltzmann transport model + hydro) arXiv:1605.06447v1
- M. Djordjevic (QCD medium of finite size with dynamical scattering centers with collisional and radiative energy loss) Phys. Rev. C 92 (Aug, 2015) 024918

Yen-Jie Lee (MIT)

EMMI RRTF Meeting

D⁰ R_{AA} vs predictions

Predictions before data capture also the rising trend of the D0 R_{AA}

- PHSD (Parton-Hadron-String Dynamics model[2])
- S.Cao et al. (Linearized Boltzmann transport model + hydro) arXiv:1605.06447v1
- M. Djordjevic (QCD medium of finite size with dynamical scattering centers with collisional and radiative energy loss) Phys. Rev. C 92 (Aug, 2015) 024918
- CUJET3.0 (jet quenching model based on DGLV opacity expansion theory) JHEP 02 (2016) 169
- I.Vitev (Jet propagation in matter, soft-collinear effective theory with Glauber gluons (SCETG)) Phys. Rev. D 93 (Apr, 2016)

Yen-Jie Lee (MIT)

EMMI RRTF Meeting

Outlook

Yen-Jie Lee (MIT)

Near Term Plan

 D^0 meson v_N measurement in PbPb at 5.02 TeV, complementary to charged particle v_N measurement at High precision D^0 azimuthal anisotropy

B meson R_{AA} in PbPb at 5.02 TeV, to be compared to B meson R_{pA} , charged particle & D0 meson R_{AA} Flavor dependence of jet quenching with **fully reconstructed B meson**

Back-to-back doubly tagged b-jets p_T asymmetry in PbPb at 5.02 TeV, to be compared to inclusive dijet **Suppress gluon splitting contribution**

26

Yen-Jie Lee (MIT)

Pixel Upgrade (2016 YETS)

EMMI RRTF Meeting

Near Term Future (2018)

High precision charged particle, D^0 and $B^+ R_{AA}$ and v_N data!

Yen-Jie Lee (MIT)

Summary

• B and D meson in pp and pPb collisions: p_T and y distributions of B and D⁰ mesons agrees with FONLL calculation within the quoted uncertainties

• b-jet and c-jet in pPb collisions: No significant nuclear effect observed within the current uncertainties in the kinematics range studied with respect to PYTIHA

- Very successful data-taking with CMS in 2015!
 - High statistics pp (~2.5 billion events) and PbPb minimum bias sample at 5.02 TeV collected for low p_T D⁰ meson analyses
 - Online high p_T D⁰ meson triggers are deployed during pp and PbPb data-taking period to record high p_T D⁰ mesons
 - Online dimuon triggers are used to record high statistics J/ψ for B meson and non-prompt J/ψ analyses
- Run II result: The first D⁰ meson and charged particles in PbPb at 5.02 TeV
 - Use pp reference at the same collision energy
 - Prompt D⁰ fraction from data-driven method
 - D⁰ mesons can be reconstructed without particle identification
 - Significant suppression of D⁰ is similar to inclusive charged particle over a wide kinematics range
- Many more exciting results from Run II data coming soon! ... stay tuned!

Yen-Jie Lee (MIT)

EMMI RRTF Meeting

Backup slides

Yen-Jie Lee (MIT)

Yen-Jie Lee (MIT)

Comparison with charged particle R_{AA}

EPJC 72 (2012) 1945

CMS PAS HIN-15-005

EMMI

RRTF

Meeting

Yen-Jie Lee (MIT)

Efficiency and Acceptance Correction

Yen-Jie Lee (MIT)

EMMI RRTF Meeting

ATLAS result at 7 TeV

Yen-Jie Lee (MIT)

Nuclear Modification Factors:

Yen-Jie Lee (MIT)

Information for pPb Analysis

- CMS experiments of pPb collision in 2013
 - LHC delivered 4TeV (p) and 1.58 TeV/nucleon (Pb) beam
 - Integrated luminosity : 34.8 nb⁻¹
 - rapidity boosted to proton going side(forward) by 0.465 in lab frame
- Charged B, B_0 , B_s trio are measured vi J/ ψ decay channels
- Kinematic range covered
 - p_T : 10 60 GeV/c
 - rapidity : |y_{CM}|<1.93
- B⁺ and B⁻ are inclusively measured and expressed as B⁺ from now on

Hit Position Resolution

Yen-Jie Lee (MIT)

EMMI RRTF Meeting

Acceptance and efficiency correction

•a×e_{reco}: prompt D0 higher than non-prompt D0 (D0 from B-hadron decay)

- Tracks from non-prompt D⁰ are more displaced from primary vertex than tracks from prompt D⁰
- > Hi tracking has lower efficiency on further displaced tracks
- e_{cuts}: non-prompt D0 higher than prompt D0
 - Non-prompt D⁰ are more displaced from primary vertex than prompt D⁰, thus bigger d0/error_d0

CMS PAS HIN-15-012

$p_T(\mathbf{GeV/c})$	$d_0/\sigma(d_0)$	α (radians)	Vertex Probability
2.5-3.5	> 5.90	< 0.12	> 0.248
3.5-4.5	> 5.81	< 0.12	> 0.200
4.5-5.5	> 5.10	< 0.12	> 0.191
5.5-7.0	> 4.62	< 0.12	> 0.148
7.0-9.0	> 4.46	< 0.12	> 0.102
9.0-11.0	> 4.39	< 0.12	> 0.080
11.0-13.0	> 4.07	< 0.12	> 0.073
13.0-16.0	> 3.88	< 0.12	> 0.060
16.0-20.0	> 3.67	< 0.12	> 0.055
20.0-28.0	> 3.25	< 0.12	> 0.054
28.0-40.0	> 2.55	< 0.12	> 0.050

Table 1: Summary table of the selection criteria in different p_T intervals.

Yen-Jie Lee (MIT)

EMMI RRTF Meeting

Why studying heavy flavours in HI?

Heavy quarks produced in hard scatterings (described by pQCD) at the early stages of the collisions **interact with medium and lose energy!**

How to measure charm with CMS

Run I heavy flavour analysis

non-prompt J/ ψ measurements

CMS-HIN-15-005

Getting closer to the b-quark kinematics!

Charged particle Non prompt J/ψ D mesons

Hints of different suppression for **D mesons** and **non-prompt** J/ψ at low p_T !

45

b-jet nuclear modification in PbPb at 2.76 TeV

b-jets tagged by selecting displaced secondary vertices (SV) in the jet cone

Exclusive B meson measurements

to build B-meson candidates

Measured in pPb collisions only:

47 4

• R^{FONLL}_{pA} consistent to unity

PbPb measurement coming soon!

First Run II heavy flavour analysis! CMS-PAS-HIN-16-001

Yen-Jie Lee (MIT)

D⁰ measurements in pp and PbPb collisions

D⁰ □ **K**⁻ **π**⁺ in pp and PbPb collisions (0-10% and 0-100%) at 5.02 TeV in |y|<1.0

Analysis strategy:

•Primary and D⁰ vertex reconstruction

•D⁰ candidate reconstruction

•D meson selection:

- pointing angle (α)
- decay length normalised to its error (d₀)
- D⁰ vertex probability

Invariant mass analysis

49

Data samples:

- 2 billion pp MB events in pp and 150 million PbPb MB for low p_T analysis (<20 GeV/c)
- Triggered sample selected with dedicated HLT D⁰ filters to enhance the statistics up to very high p_T (p_T>20 GeV/c)

D⁰ triggers at High-Level-Trigger (HLT)

Events firing hardware jet triggers (Level-1) are selected

•L1 jet algorithm with online background subtraction

Tracks are reconstructed in software trigger system (HLT) for selected events

Track seed p_T cut applied: • $p_T > 2$ GeV for pp • $p_T > 8$ GeV for PbPb

D⁰ meson are reconstructed

- Online D⁰ reconstruction
- loose selection to reduce the rates based on D⁰ vertex displacement

D⁰ triggers at High-Level-Trigger

Outlook

• More precise measurements of B production are getting urgent:

- with Run2 data, CMS can measure with good precision the b-production via J/ψ←B, b-jets and exclusive B measurements
 - \rightarrow complete picture of the HF energy loss

D-meson production at low pT

 measure D meson production in PbPb (and pPb) down to ~1 GeV to further constrain the mechanisms of productions (e.g. recombination) and relevance of cold nuclear effects

D and B vn measurements

 fundamental to understand collective behaviour of HF quarks and to constraint theoretical calculations

Gluon splitting?

 the relevance of soft and hard gluon splitting processes still needs to be addressed. Are we always measuring gluon energy loss?

52

• More differential measurement (HF/photon, D-hadron correlations) are needed

Yen-Jie Lee (MIT)

PbPb analysis at 5.02 TeV in 0-10%

54 54

Acceptance x efficiency in pp collisions

55 55

Acceptance x efficiency in PbPb collisions

Drop in the efficiency is due to the tracking selection applied in the HLT tracking that requires a tight selection in the offline analysis

Summary of systematic uncertainties

57 5

Heavy-Flavour production in pPb

 \rightarrow compatible with predictions from FONLL scaled by A=208 tagged c and b-jet production \rightarrow compatible with predictions from PYTHIA scaled by A=208

HF pPb production not significantly modified by cold nuclear matter effects (e.g. PDF modification in nuclei)

PRL 116 (2016) 032301, CMS-HIN-15-012 ,PLB 754 (2016) 59

58

D⁰ R_{AA} comparison with ALICE

59 59

D⁰ R_{AA} comparison with CMS 2.76 TeV

2.76 TeV pp reference was done by extrapolating ALICE measurement via FONLL

60 60

HF production mechanisms in pp

61 6

Gluon splitting matters!

b jets

D mesons, non-prompt J/ψ

- A non negligible fraction of b-jets at the LHC come from gluon splitting
- Even more important for charm than for bottom at LHC energy!

b-jet cross section

63

- MC@NLO agreement at the edge of uncertainties
- Pythia overshoots at low p_T , agrees well at high p_T

b-jet to inclusive jet ratio

b-jet fraction = # of tagged jets * purity / efficiency

- b-jet fraction consistent within pp and PbPb within uncertainty
- Both measurements consistent with MC predictions

Charged particle RAA at 5.02 TeV

Centrality Dependence (CMS vs. ALICE)

ArXiv 1506.06604

66

Yen-Jie Lee (MIT)

EMMI RRTF Meeting

D⁰ and B⁺ peak in proton-proton collisions @ 5.02 TeV

2.5 billion minimum-bias events recorded for low $p_T D$ meson analyses (p_T <20 GeV/c). D⁰ meson trigger for high $p_T D^0$ analyses (p_T > 8 GeV/c)

Yen-Jie Lee (MIT)

EMMI RRTF Meeting

Clear D⁰ Signal in p_T Range 2.5 to 40 GeV

b-feed subtraction in pp collisions

• **f**_{prompt} = fraction of D⁰ mesons coming from c-quark fragmentation

f_{prompt} estimated fully data driven by exploiting the different shapes of distance of closest approach (DCA) distributions of prompt and non prompt D⁰ mesons

fprompt fraction in pp collisions

70 70

D and B Meson Decay Channels

B Meson Reconstruction in CMS

- B⁺ : J/ψ + 1 track (kaon, p_T > 0.9 GeV/c)
- B⁰ : J/ψ + 2 tracks (kaon + pion, p_T>0.7 GeV/c)
- B_s : J/ ψ + 2 tracks (kaon + kaon, p_T >0.4 GeV/c)
- Charged tracks and muons are reconstructed within $|\eta| < 2.4$
- Trigger muon $p_T > 3 \text{ GeV/c}$
- No PID: Assigned the mass of kaon or pion to charged tracks

EMMI RRTF Meeting
B Meson Acceptance and Efficiency

Raw yields are corrected by acceptance and efficiency

Yen-Jie Lee (MIT)

EMMI RRTF Meeting

Differential Cross-section in pPb @ 5 TeV

- pp reference : FONLL expectation is used
 - agreement with CDF and CMS(ATLAS) data
 - calculated in http://www.lpthe.jussieu.fr/~cacciari/fonll/fonllform.html

Yen-Jie Lee (MIT)

EMMI RRTF Meeting

Rapidity Distribution in pPb @ 5 TeV

Rapidity dependence of B⁺ production

R_{pA}^{FONLL} is compatible with unity within theoretical and experimental uncertainties

PRL 116 (2016) 032301 arXiv:1508.06678

Acceptance and Efficiency Correction

 Combined effects of tracking efficiency and D⁰ meson selection efficiency

 Acceptance and efficiency of non-prompt D⁰
(D⁰ from b-hadron decay)
will be used to estimate the the B feed-down correction factor

CMS

B→D Feed-down Correction

Prompt D⁰ Spectrum and R*_{AA} in Centrality 0-100%

pp reference:

- p_T < 16 GeV, data-extrapolated, scaled from ALICE pp @ 7 TeV [1] with FONLL [2]
- $p_T > 16$ GeV, FONLL calculation

Yen-Jie Lee (MIT)

EMMI RRTF Meeting

Prompt D⁰ Spectrum and R^*_{AA} in Centrality 0-100%

pp reference:

 p_T < 16 GeV, data-extrapolated, scaled from ALICE pp @ 7 TeV [1] with FONLL [2] Prompt D⁰ production is strongly suppressed in PbPb collisions

79

• $p_T > 16$ GeV, FONLL calculation

Yen-Jie Lee (MIT)

Comparison with Theoretical Models

Yen-Jie Lee (MIT)

EMMI RRTF Meeting

CMS vs. ALICE Results

For $p_T > 16$ GeV, differences in pp reference should be taken into account

Yen-Jie Lee (MIT)

CMS vs. ALICE using FONLL as Reference

Yen-Jie Lee (MIT)

Results from pp and pPb

Yen-Jie Lee (MIT)

D^0 and ψ peak in \mbox{PbPb} collisions @ 5.02 TeV

D⁰ mesons from online trigger

A large minimum bias sample (and centrality triggered sample) is recorded for low $p_T D^0$, D⁺, D^{*} and D_s analyses

D^o spectra in pp at 5.02 TeV

- Invariant mass spectra of D^0 mesons in pp collisions at 5.02 TeV

Mass distributions fitted with:

- 3rd order polynomial fit for combinatorial background
- Double gaussian to model the signal
- Gaussian shape to model the candidates with swapped mass hypothesis

D⁰ Reconstruction

$\bigstar D^0 {\rightarrow} K^{\text{-}} \pi^{\text{+}}$, BR = 3.88 \pm 0.05%, c
τ(D^0) = 122.9 μm

- D⁰ candidates reconstructed by combining oppositely charged tracks
 - Tracks with high purity selection, $|\eta| < 1.1$ and $p_T > 1$ GeV/c
 - No (K-π) particle identification applied: two mass assignments for one track pair→Two candidates for one track pair

 p_{π}

93D

 p_{r}

86

Topological selections:

- 3D decay length significance (d_{3D}/σ(d_{3D}))
- Pointing angle α
- Vertex χ² fit probability

EMMI RRTF Meeting

PV

B⁺ Meson Mass Spectra in pPb

Yen-Jie Lee (MIT)

EMMI RRTF Meeting

combinatorial background

D⁰ Signal Extraction: $D^0 \rightarrow K^- \pi^+$

CMS

Yen-Jie Lee (MIT)

D⁰ Signal to Background Ratio Comparison

From raw yields to cross sections

Yen-Jie Lee (MIT)

EMMI RRTF Meeting

Systematic uncertainty summary

Signal extraction systematics

 Varying signal and background fit functions

D meson selection:

- Comparing data and MC data

driven

- efficiencies of the different cut selections
- Systematic on trigger efficiency
- Tracking efficiency systematic: (evaluated data driven with 2 and 4 prongs D⁰ decays!)

B-feed down uncertainty

 Obtained by comparing f_{prompt} estimation with alternative method based on decay length and with FONLL-based predictions

