

Prospects for SiPMs at the Crystal-Barrel Experiment

Christoph Wendel

HISKP Universität Bonn

The Crystal-Barrel-Experiment at ELSA

Places for SiPM Application

- New Tagging Hodoskop
- Calorimeter Trigger
- TPC Start Detector

CsI (TI) Calorimeter - Trigger

1230 crystals with photodiode readout via WLS

no trigger capability

90 crystals with PMT readout

do not work within 2 Tesla

need for a fast trigger solution : either

adding SiPMs to the WLS

or

 replacing the PDs with APDs (with or without WLS)

SiPM CsI(TI) Readout

PhotoDiode

idea : adding two SiPMs in parallel mode to the WLS

concept 1: shaped amplification

2 SiPMs • τ =40 ns : ~ 100 ns risetime

concept 2 : differential amplifier

 no real improvement of signal to noise ratio

most noise from the SiPM

CsI(TI) Readout with Pulsar SiPMs

- two 9 mm² / 5kPixel SiPMs (MEPhl / Pulsar) in parallel
- triggerthreshold of 25 MeV tested with nearly 100% efficiency; 20 MeV possible

Time Resolution with Pulsar SiPMs

- measured timeresolution
 - $\sigma = 9 \text{ ns } @ 50 \text{ MeV}$
 - $\sigma = 22 \text{ ns } @ 30 \text{ MeV}$
- SiPM readout fullfills our requirements

- tests with 3x3 mm Photonique SiPMs in progress
- show already a much better signal to noise ratio (compared to 2 year old Pulsar SiPMs)

TPC Start Detector

TPC Start Detector

TPC Start Detector - Constraints

Detector Design Options

inorganic scintillating fibres

- bright, but... high Z
- high photon conversion propability
- proton scattering
- many (expensive) fibres = channels needed

plastic scintillators (triangular bars)

- few(er) channels
- dark (without cladding), < 5
 <p>photoelectrons with a PMT at middle of a bar

plastic fibres

 "classic" solution, > 50 photoelectrons at 15 cm

SiPM Readout of a Scintillating Fibre

- 30 cm of 2 mm green BCF20 fibre
- Sr⁹⁰ source at 15 cm, simultaneous readout of both ends (SensL & Photonique)
- external coincidence

SensL 3x3 mm

- SPMScint3035X13
- 3640 Cells

Photonique 2x2 mm

- SSPM_0611B4mm_PCB
- 1700 Cells

SiPMs read out with Photonique AMP-0611 Preamp at 9V (Battery)

Fibre Response to Electrons

Typical signal in self trigger

MIP signal triggered by the external coincidence

SiPM - 10 cm cable - PreAmp - 30 cm cable - testbox feedthrough - 1 m cable

Bias supply - 2 m cable - feedthrough - 30 cm cable - PreAmp

Fibre Response to Electrons

Typical signal in self trigger

MIP signal triggered by the external coincidence

SiPM - 50 cm cable (or no cable) - PreAmp - no cable (or 50 cm cable) - patchpanel - 8 m cable

Bias supply - 8 m cable - patchpanel - no cable (or 50 cm cable) - PreAmp

Fibre Response to Electrons

average pulseshape of 512 samples

Summary

- three (possible) applications for SiPMs at the Crystal Barrel Experiment
- noise still the biggest problem under "real" experimental conditions (room temperature, running experiment / accelerator nearby, larger distances between SiPM and electronic)
- ongoing tests for all three applications ...