Geiger mode APD's for the neutrino oscillation experiment T2K

Yury Kudenko

(Representing the T2K Collaboration)

Institute for Nuclear Research Moscow

GSI, Darmstadt, 9 February 2008

Current status of neutrino mass and mixings

3 mixing angles $(\theta_{12}, \theta_{23}, \theta_{13})$ 1 CPV phase (δ) 2 (independent) mass differences $(\Delta m_{ij}^2 = m_i^2 - m_j^2)$

Present knowledge and next steps

- Mixing angle θ_{13}
- Mass hierarchy (sign of $\Delta m_{23}^2 \rightarrow m_3 > m_1$ or $m_3 < m_1$)
- CP violation
- Absolute mass scale
- Dirac or Majorana
- Approaches
 - LBL experiments: multi purpose (θ_{13} , sign(Δm^2), CPV, θ_{23} , Δm_{23}^2)
 - Reactor-based v_e disappearance: single purpose (θ_{13}), complementary

T2K (Tokai to Kamioka) LBL neutrino experiment

Goals of T2K

- Confirmation of $\nu_{\mu} {\rightarrow} \nu_{\tau}$ using NC events

Photosensor issue

Scintillator detectors with WLS fibers

- Individual fiber readout
 - FGD, POD, Ecal, SMRD, INGRID: ~ 60000 readout channels
- Limited space for photosensors
- Magnetic field

T2K decision in 2004: ND280m baseline photosensor -Multi-pixel Geiger mode avalanche photodiode

T2K photosensor

R&D for 3 years with 2 options: MRS APD (CPTA, Moscow) MPPC (Hamamatsu, Japan)

T2K photosensor: MPPC

HPK311-53-1A-002-1

Hamamatsu MPPC: active area 1.3×1.3 mm²

Number of pixels	667
Pixel size	50×50 μm
Gain	~0.7×10 ⁶
PDE at 525 nm	25-30%
Dark rate, th = $0.5 \text{ p.e.},22C$	≤1000 kHz
Pulse width	<100 ns
Cross-talk	10-15%
After pulses	10-15%

Yury Kudenko INR-Moscow

Macc production for T2K

total number of MPPC's for T2K 63800

mass production/delivery start finish

February 2008 February 2009

all devices are manufactured

almost all tested less than 0.1% failed to pass tests and rejected

Testing MPPC's

PDE

PDE at 515 nm

Yury Kudenko

INR-Moscow

Uniform sensitivity

25C, gain~7x10⁵, green light

INR

Warwick

Breakdown and bias voltages

\geq 11000 devices

Bias and breakdown voltages by serial number

Measurements at CSU

Dark rate

CSU

INR-Moscow

V_bd vs temperature

Long term stability

3 MPPC's were tested for long time 21 hrs/24 hrs heating at 80C for 520days

Tests at LSU

Long term stability

Detector characterization (I)

Detector characterization (II)

SMRD detectors

INR

Extruded plastics ~7x170x870 mm³ Y11 fibers embedded in S-grooves

MIP detection efficiency	> 99.9%
σ _t (MIP)	~ 0.7 ns
Spatial resolution	~ 7 cm

Light yield

I.y. (sum of 2 ends) = 58 p.e./MIP

Summary

-Primary goal of T2K: discovery of $v_{\mu} \rightarrow v_{e}$ neutrino beam commissioning April 2009 start data taking December 2009

- T2K near neutrino detector uses ~60000 MPPC's (first large scale experiment with Geiger mode APD's)
- Mass production of sensors for T2K completed
- Parameters of MPPC's satisfy the T2K requirements
- Worldwide T2K tests demonstrate good quality and reliability of MPPC's