

SiPM technology at FBK

<u>C.Piemonte</u>, M. Melchiorri, A. Piazza, A. Tarolli, N. Zorzi

FBK – Fondazione Bruno Kessler, Trento, Italy piemonte@fbk.eu

- FBK fabrication capabilities
- FBK SiPM technology
- Results achieved during the years
 - 2006
 - 2007
 - 2008

Capabilities in silicon technology

TCAD simulation CAD design

- 500m² lab for silicon device processing.
- no process steps out.
- all autom. equipment.

- 4" wafers.

Device testing

- 3 automatic probers
- 2 manual probers
- optical bench
- basic lab for functional tests

15-year experience in silicon radiation detectors

SiPM Technology

Standard approach but with two peculiarities:

- 1) Very shallow junction
- 2) ARC optimized for short wavelenghts

NSS 2006 – San Diego

C. Piemonte et al. IEEE TNS, February 2007

10.00

1.00

0.10

0.01

-1.0E-08

C. Piemonte

Amplitude (a.u.)

4x4mm² SiPM - 50x50mm² cell

4x4mm²

Gain 3.E+06 -25C -15C 2.E+06 30 31 32 33 Voltage (V) 16 x Dark Count of 1mm² SiPM -15C -25C 30 31 32 33 Voltage (V)

4x4mm² SiPM - 50x50mm² cell

T=-25C Vbd=27.6V

Charge spectra under illumination with short low-intensity light pulses

- Excellent cell response uniformity over the entire device (6400 cells)
- Width of peaks dominated by electronic noise

4x4mm² SiPM - 50x50mm² cell

PET application: SiPM + LYSO

Measurements by Philips Aachen

C. Piemonte

Response uniformity

SiPM array for fiber tracking application

Charge deposited versus SiPM array channel under illumination with a pulsed LED.

Gain variation of 2%

R. Greim, H. Gast, T. Kirn, J. Olzem, G. Roper Yearwood, S. Schael, N. Zimmermann, G. Ambrosi;c, R. Battiston; C. Piemonte presented at Siena conference 2008 10

Cell functionality and fill factor

2008/09 – large area devices & first productions

HyperImage EU-funded project (www.hybrid-pet-mr.eu)

Finalized small production for first small animal PET/MR Produced ~700 fully working arrays

HI SiPM - testing procedure

HI SiPM – faulty devices

Most common defect is premature breakdown

SiPM with 1 defective cell. The current can be modeled as I=(V-Vbd)/Rq

HI SiPM – summary of a wafer test (good one)

Wafer map

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1			29.0	6.0	28.8	28.9	28.8	28.7	28.6	28.8	26.0	29.4		
2			28.8	28.5	28.4	28.6	28.9	28.9	28.7	28.7	28.8	29.0		
3	28.7	28.7	28.9	28.7	28.4	28.4	28.5	28.7	28.9	29.1	29.1	28.9	28.9	15.0
4	28.6	28.4	28.4	28.6	28.7	28.9	28.6	28.6	28.6	28.8	29.2	29.3	12.0	28.9
5	28.8	28.6	27.0	28.4	28.8	29.1	29.2	29.1	28.9	28.8	28.7	29.0	29.2	29.1
6	28.3	28.7	28.7	28.7	28.8	28.9	29.3	29.4	29.3	29.1	28.8	28.7	28.6	28.7
7	28.3	28.2	15.0	29.1	29.4	29.4	29.4	29.3	29.3	29.4	29.1	28.8	28.7	28.5
8	28.4	28.4	28.5	28.8	16.0	29.9	29.9	29.6	29.3	29.1	28.9	28.9	28.8	28.6
9	28.6	28.6	28.8	29.1	29.4	29.8	30.1	30.1	29.8	29.2	28.8	28.6	28.5	28.9
10	28.4	28.5	29.1	15.0	29.6	29.8	29.9	29.9	29.5	29.4	29.0	28.6	28.6	28.5
11	28.5	15.0	28.9	16.0	29.7	30.1	30.0	29.6	29.2	29.0	29.0	28.7	28.7	28.5
12	28.9	29.0	29.1	29.3	29.4	29.7	29.9	29.7	29.1	28.6	28.5	28.7	28.5	28.7
13	28.7	29.1	29.3	29.6	29.6	29.5	29.4	29.3	29.1	28.8	28.6	28.3	28.3	28.6
14	28.9	28.9	29.1	29.5	29.7	29.6	29.4	29.0	28.6	28.7	28.6	28.4	28.4	28.4
15	29.1	29.1	29.0	29.3	29.4	29.6	29.3	28.9	28.6	28.4	28.2	28.4	28.6	28.7
16	29.1	29.2	18.0	12.0	29.2	29.2	29.0	28.9	28.8	28.4	28.2	28.3	28.4	28.7
17	26.9	29.1	29.3	29.3	29.3	17.0	28.7	28.6	28.6	28.6	28.5	28.5	28.5	28.5
18	12.0	29.2	12.0	29.2	29.1	13.0	28.7	28.5	28.4	28.4	28.6	28.7	28.7	28.9

white = OK red = premature breakdown green/blue = problems after breakdown

Breakdown voltage

C. Piemonte

BRUNO KESSLER

HI SiPM – first functional tests ongoing

LYSO crystal mounted on the SiPMs

mounting @ Philips Aachen

4 arrays mounted on test PCD

DaSiPM2 Arrays, IV

3x3 array of 3x3mm² SiPMS

- Collaborations both in nuclear medicine and HEP
- We are moving towards large area monolithic arrays.
 - Long tedious work to understand origin of defects and improve yield
 - Working to improve BD uniformity

- R&D:
 - on array/SiPM interconnectivity;
 - new SiPM technology.