Facility for Antiproton and Ion Research

Overview of Facility and Experiments

Lars Schmitt, GSI Darmstadt
G-APD Workshop, GSI, Darmstadt, Feb 9th 2009

- The Facility
- The Physics
- Summary & Outlook

Facility for Antiproton and Ion Research

Five Pillars of Research at FAIR

- Nuclear Structure Physics and Nuclear Astrophysics with RIBs
- Hadron Physics with Antiproton Beams
- Physics of Nuclear Matter with Relativistic Nuclear Collisions
- Atomic Physics and Applied Science with highly charged Ions and Iow energy Antiprotons
- Plasma Physics with highly Bunched Beams
- + Accelerator Physics

Layout of the Facility

Primary Beams

- ²³⁸U²⁸⁺: 10¹²/s @ 1.5-2 AGeV;
- ²³⁸**U**⁹²⁺: 10¹⁰/s @ up to 35 AGeV
- **Protons**: 2 x10¹³/s @ 30 GeV
- → 100-1000 x present intensity

Secondary Beams

- Broad range of radioactive beams up to 1.5 2 AGeV
- up to 10 000 x present intensity
- Antiprotons 0 15 GeV

Storage and Cooler Rings

- Radioactive beams
- e A (or Antiproton-A) collider
- 10¹¹ stored and cooled antiprotons 1.5 - 15 GeV/c
- Future: Polarized antiprotons

Key Technical Features

- Cooled beams
- Rapidly cycling superconducting magnets
- Parallel Operation

Accelerator Highlights

Parallel Operation

- High duty cycle
- Optimal usage
- Synergy effects
- → Rapidly cycling magnets

Superconducting, fast ramping synchrotron magnets

SIS 100/300 dipole magnet

Entest not syttheoliber - Raffellin

NUSTAR - Super Fragment Separator

NUSTAR - Super Fragment Separator

FLAIR - Low Energy Antiprotons

Facility for Low energy Antiproton and Ion Research

Continue & extend program of CERN AD

- Spectroscopy as Test for CPT and QED
 - Antiprotonic atoms (pHe, pp), anti-hydrogen
- Gravitation of anti-matter
 - Trapped and laser-cooled anti-hydrogen
- Atomic Collisions
 - Ionization, energy loss, anti-matter-matter
- Antiprotons as hadronic Probes
 - X-rays of light p-Atoms: Low energy QCD
 - X-rays of neutron rich nuclei: nuclear structure (halo)
 - Antineutron interaction
 - Strangeness –2 production
- Medical application: Tumor therapy

High-brilliant Low energy beams

USR

DC beam, rare ions

Higher energies

FLAIR - Facility

- NESR
 - p & lons 30 – 400 MeV
- LSR:
 - Standard Ring< 300 keV
- USR
 - Electrostatic
 - < 20 keV
- HITRAP
 - p̄ & ions stopped
 & extracted @ 5 keV

NESR min. 30 MeV

CRYRING

Challenge! new MPI-K HD

In construction for ESR @ GSI with Hall A of CDR

New low-energy antiproton and ion facility

CBM - Compressed Baryonic Matter

- In-medium modifications of hadrons
 - \bullet onset of chiral symmetry restoration at high $\rho_{\rm B}$
 - measure: ρ , ω , $\phi \rightarrow e^-e^-$ and open charm
- Strangeness in matter (strange matter?)
 - enhanced strangeness production ?
 - measure: $K, \Lambda, \Sigma, \Xi, \Omega$
- Indications for deconfinement at high ρ_B
 - anomalous charmonium suppression ?
 - measure: J/ψ, D
- Critical point
 - event-by-event fluctuations
- Color superconductivity
 - precursor effects ?

CBM - Experimental Challenge

Central Au+Au collision at 25 AGeV: URQMD + GEANT

160 p 170 n 360 □- 330 □ 360 □° 41 K⁺ 13 K⁻ 42 K⁰

- 10⁷ Au+Au interactions/sec
- 10° tracks/sec to reconstruct for first level event selection
- Find D vertices displaced by few 100 µm

CBM - Apparatus

- Radiation hard Silicon (pixel/strip) Tracking System in dipole
- Muon setup: iron absorbers and GEM detectors
- Electron setup: RICH & TRD & ECAL: π/e < 10-4
- Measurement of photons, π, η, and muons: ECAL
- Hadron identification: TOF-RPC
- High speed data acquisition and trigger system

PANDA - Hadron Physics with Antiprotons

Structure & Dynamics of Hadrons in the transition regime of QCD

Why don't we observe free quarks?

- Charmonium spectroscopy
 - → Quark confinement

How are color neutral states formed?

- Hadrons (qqq or qq)
- Gluonic excitations
- Multi-quark systems
 - → QCD predictions

How do hadrons obtain mass?

- p-A interactions
- Meson properties in nuclear medium
 - → Restoration of chiral symmetry

What is the structure of the nucleon?

- Hard scattering processes & soft fragmentation
 - → From partons to hadrons

Strong coupling constant vs R

High Energy Storage Ring

HESR Parameters

- Injection of p at 3.7 GeV
- Slow synchrotron (1.5-15 GeV/c)
- Storage ring for internal target
- Luminosity up to L~ 2x10³² cm⁻²s⁻¹
- Beam cooling (stochastic & electron)

Resonance scan

- Energy resolution~50 keV
- Tune E_{CM} to probe
 resonance
- Get precise m and Γ

PANDA Spectrometer

PANDA Spectrometer

Summary & Outlook

- FAIR will be a major facility in fundamental physics research
 - World class RIB facility
 - Heavy ion program complementary to RHIC and LHC
 - Hadron physics with antiprotons unique
 - Atomic physics with ions and antiprotons
 - Plasma research with laser and ion beams
- The next important steps:
 - Founding of the FAIR company in summer 2009
 - Planning and building permits until end 2009
 - Begin of civil construction in 2010
 - 36 months for all buildings and tunnels
- First physics in 2013/14

