Frontend electronics for the Focussing Disc DIRC

- Detector setup
- Constraints
- Requirements
- Possible Solutions
- Outlook

Tibor Keri, Nuclear Physics Experiments Group @ Glasgow, 2009-03-03 @ GSI Darmstadt

Detector Setup

- Disc
 - Fused Silica (SiO2) Suprasil 311
 - 4+2 pieces
 - Radius 1100mm
 - Thickness 20mm
- LiF-Crystal Block
 - Dispersion correction
 - 50x50x20mm^3
- Focussing Lightguide
 - Focussing Cherenkov angles to focal points
- Converter
 - 128 MCP-PMT Burle 85011
 - 50x50mm^2
 - 15mm Thickness
 - 1x32Channels
 - 4096 channels total

Contraints

- Geometrical constraints
 - 1202mm = 128 MCP-PMT with 59mm as inner radius
 - 17mm = 52mm/tan(70deg) to minimize Mag. Field impact
 - 15mm = thickness MCP-PMT Burle 85011
 - 75mm = holding frame size
 - 1325mm = outermost radius
 - Yields to ~15mm space for electronics behind MCP-PMT
- Electrical constraints
 - ~3KV for the MCP-PMT
 - Rise/Fall time of PMT signals ~few ns
 - Timing resolution ~few 100ps should be fine
 - ~4k channels by 128MCP-PMT with 32Channels
 - 4 times 8channel Connector with 2mm pin-distance

Requirements

- Rough data assumptions
 - 20M intersections per seconds
 - 7 : Multiplicity in average
 - 30 : Number of generated Photons
 - 128 MCP-PMT
 - yields
 - ~33M hits per MCP-PMT
 - ~1M per MPC-PMT-channel
 - 7Bytes per hit
 - 2 for location
 - 3 time stamping
 - 1 for status
 - 1 spare
 - ~230MBytes per second per MCP-PMT
 - ~2.5GBit per second per MCP-PMT
 - Background NOT included yet

Ad hoc possible readout system

- Selfmade ASICS
 - FEE with full digitization; data available for download
 - Costs, man power, knowledge, complexity, time
 - Crosslinked MCP-PMT for noise hit suppression
- ASICS from market adapted
 - More or less same like above
- Discriminator with TDC-chip
 - Digitizing on FEE
 - Filtering with "standard" equipment out side detector
- PreAmplifier
 - FEE only for Signal/Noise-Improvements and transmitter
 - Digitizing/filtering with stock-hardware out side detector

Outlook

- DAQ and Trigger Workshop
 - Collect remaining constraints
 - Collect further physical constraints (multiplicity;#Photons;....)
 - Time stamping interface
 - Trigger contribution
 - Available Hardware space inside detector
 - Location of hardware / distributed readout
 - Compile a list of possible solutions
 - Collect requirements for the interfacing and monitoring
- Any other requests