dE/dx		CO
00	0000	

Concepts for TPC Calibrations $\bar{P}ANDA$ meeting

Alexander Winnebeck

Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn

3^{rd} March 2009

Intro	dE/dx	CO
•		

Parameters need to be calibrated

Track reconstruction

- Drift velocity v_d
- Field distortions
- Gain of readout channels

Intro	dE/dx	CO
•		

Parameters need to be calibrated

Track reconstruction

- Drift velocity v_d
- Field distortions
- Gain of readout channels

dE/dx measurement

- Linearity of readout
- Energy calibration

dE/dx	CO
•0	

dE/dx with cosmic tracks

Method

- $\bullet~dE/dx$ distribution from cosmics per pad
- Determine calibration factors

dE/dx	Track	CO
●0	0000	o

dE/dx with cosmic tracks

Method

- $\bullet~dE/dx$ distribution from cosmics per pad
- Determine calibration factors

Pros

- Calibration of gain per pad
- No extra equipment needed

dE/dx	Track	CO
●0	0000	o

dE/dx with cosmic tracks

Method

- $\bullet~dE/dx$ distribution from cosmics per pad
- Determine calibration factors

Pros

- Calibration of gain per pad
- No extra equipment needed

Cons

- Statistical process of energy deposition
- No energy calibration or linearity check
- Not tuneable rate

universität

dE/dx	Track	CO
⊙●	0000	o

dE/dx with ^{83m}Kr method

Method

- Add $^{83m}{\rm Kr}$ atoms to drift gas, which decay isotropically in drift volume
- Charge deposition up to 42 keV with several peaks

dE/dx	Track	CO
o●	0000	o

dE/dx with 83m Kr method

Method

- Add $^{83m}{\rm Kr}$ atoms to drift gas, which decay isotropically in drift volume
- Charge deposition up to 42 keV with several peaks

Pros

- Calibration of gain and linearity
- Absolute energy calibration from totally absorbed γ 's
- Simple upgrade of gas system

dE/dx	Track	CO
⊙●	0000	o

dE/dx with 83m Kr method

Method

- Add ^{83m}Kr atoms to drift gas, which decay isotropically in drift volume
- Charge deposition up to 42 keV with several peaks

Pros

- Calibration of gain and linearity
- Absolute energy calibration from totally absorbed γ 's
- Simple upgrade of gas system

Cons

• Handle of radioactive material (⁸³Rb)

Method used e.g. in NA49 and ALICE.

dE/dx	Track	CO
oo	●000	o

Determination of drift velocity over whole volume

Use external tracking devices to determine the z coordinate of the track and measure Δt

dE/d×	Track	CO
	0000	

Determination of drift velocity over whole volume

Use external tracking devices to determine the z coordinate of the track and measure Δt

Observation of field inhomogeneities

Reconstructed tracks have to be smooth in 3D

dE/dx	Track	CO
	●000	

Determination of drift velocity over whole volume

Use external tracking devices to determine the z coordinate of the track and measure Δt

Observation of field inhomogeneities

Reconstructed tracks have to be smooth in 3D

Measuring momentum resolution

Compair momentum of reconstructed tracks in the upper and the lower half of the TPC. Inhomogeneities in gas and \vec{B} get visible.

dE/dx	Track	CO
00	•000	

Determination of drift velocity over whole volume

Use external tracking devices to determine the z coordinate of the track and measure Δt

Observation of field inhomogeneities

Reconstructed tracks have to be smooth in 3D

Measuring momentum resolution

Compair momentum of reconstructed tracks in the upper and the lower half of the TPC. Inhomogeneities in gas and \vec{B} get visible.

Alignment to external tracking devices

Employ reconstructed tracks in sub detectors to align them

Intro	dE/dx	Track	CO
		0000	

Track calibration with laser tracks

Method

- Generate grid of laser tracks in the volume
- Measure drift time
- Compair reconstructed with laser tracks

dE/dx	Track	CO
00	0000	

Track calibration with laser tracks

Method

- Generate grid of laser tracks in the volume
- Measure drift time
- Compair reconstructed with laser tracks

Pros

- Accurate laser tracks in the whole volume
- Standard method for TPCs (ALEPH, ALICE,...)

dE/dx	Track	CO
	0000	

Track calibration with laser tracks

Method

- Generate grid of laser tracks in the volume
- Measure drift time
- Compair reconstructed with laser tracks

Pros

- Accurate laser tracks in the whole volume
- Standard method for TPCs (ALEPH, ALICE,...)

Cons

- Requires additional space and much more equipment
- No ionization of drift gas itself, but of impurities
- Laser produces electrons on surfaces

dE/dx	Track	CO
	0000	

Track calibration with electron point sources

Method

Grid of point like triggerable electron sources on the drift cathod

dE/dx	Track	CO
	0000	

Track calibration with electron point sources

Method

Grid of point like triggerable electron sources on the drift cathod

Pros

- Compact integration into cathod plane possible
- Measurement of drift velocity and field distortions

dE/dx	Track	CO
	0000	

Track calibration with electron point sources

Method

Grid of point like triggerable electron sources on the drift cathod

Pros

- Compact integration into cathod plane possible
- Measurement of drift velocity and field distortions

Cons

• Determines only integrated v_d

dE/dx	Track	CO
oo	000●	o

Field emission

Fails, needs vacuum

dE/dx	Track	CO
	000	

Field emission

Fails, needs vacuum

Metalized fiber tips

Very fragile & needs high power UV laser + space

dE/dx	Track	CO
	0000	

Field emission

Fails, needs vacuum

Metalized fiber tips

Very fragile & needs high power UV laser + space

UV LED + metal coating

Efficiency and spread of e^- ?

dE/dx	Track	CO
	000	

Field emission

Fails, needs vacuum

Metalized fiber tips

Very fragile & needs high power UV laser + space

UV LED + metal coating

Efficiency and spread of e^- ?

dE/dx	Track	CO
oo	000●	o

Field emission

Fails, needs vacuum

Metalized fiber tips

Very fragile & needs high power UV laser + space

UV LED + metal coating

Efficiency and spread of e^- ?

Intro	dE/dx	CO
		•

Conclusion

- Many parameters need to be calibrated
- No all-in-a-wonder solution need of different methods
- For dE/dx calibration use 83m Kr method (cmp. w/ cosmics)
- Use electron sources and cosmics for track calibration

Intro	dE/dx	CO
		•

Conclusion

- Many parameters need to be calibrated
- No all-in-a-wonder solution need of different methods
- For dE/dx calibration use 83m Kr method (cmp. w/ cosmics)
- Use electron sources and cosmics for track calibration

Outlook

- Setup 83m Kr method on test TPC
- Investigate pointlike electron sources
- Integration into prototype

