

### Theoretical Methods in Hadron Spectroscopy

Sinéad M Ryan Trinity College Dublin



GSI 10<sup>th</sup> May 2016

#### SUMMARY

### HADRON SPECTROSCOPY: WHY?

- Many recently discovered hadrons have unexpected properties.
- Understand the hadron spectra to separate EW physics from strong-interaction effects
- Techniques for non-perturbative physics useful for physics at LHC energies.
- Understanding EW symmetry breaking may require nonperturbative techniques at TeV scales, similar to spectroscopy at GeV.
- Better techniques may help understand the nature of masses and transitions

The theory of the strong force: Quantum Chromodynamics

### QUANTUM CHROMODYNAMICS (QCD)

The quantum field theory of the strong interaction that binds quarks and gluons to form hadrons.

 $\frac{1}{4g^{\alpha}} G_{\mu\nu}^{\alpha} G_{\mu\nu}^{\alpha} + \sum_{j} \overline{g}_{j} (i \partial_{j}^{\mu} D_{\mu} + M_{j}) g_{j}$ where  $G_{\mu\nu}^{\alpha} \equiv \partial_{\mu} R_{\nu}^{\alpha} - \partial_{\mu} R_{\mu}^{\alpha} + i \int_{\partial \alpha}^{\alpha} R_{\mu}^{\beta} R_{\nu}^{\alpha}$ and  $D_{\mu} \equiv \partial_{\mu} + i t^{\alpha} R_{\mu}^{\alpha}$   $\frac{T h a^{\alpha} s}{t^{\alpha}} \frac{i t^{\alpha}}{t^{\alpha}}$ 

from F.A. Wilczek

• this doesn't look too bad - a bit like QED which we have a well-developed toolkit to deal with

| INTRODUCTION | QCD<br>000 | Theoretical Tools<br>000000000 | Summary |
|--------------|------------|--------------------------------|---------|
| SOME MORE    | DETAILS    |                                |         |

**QCD** is a gauge-invariant quantum field theory

$$\mathcal{L} = \bar{q} \left( i \gamma^{\mu} \partial_{\mu} - m \right) q + g \bar{q} \gamma^{\mu} t_{a} q A^{a}_{\mu} - \frac{1}{a} F^{a}_{\mu\nu} F^{\mu\nu}_{a}$$

- Actually not easy at all! an enormous challenge!
- One way to see this is to note that *g* is not a small number so perturbation theory (an expansion in a small parameter) that works so well for QED will not be so useful for QCD.
  - There are some small numbers around the quark masses  $m_{u,d} \sim \mathcal{O}(1) MeV$ .
- Matter: quark fields the building blocks; quark mass is input parameter in *L*

 $q_i^f \left\{ \begin{array}{l} i \in \{\text{red}, \text{blue}, \text{green}\}\\ f \in \{\text{u}, \text{d}, \text{s}, \text{c}, \text{b}, \text{t}\} \end{array} \right.$ 

spin = 1/2; charge = 2/3, -1/3

- the t<sub>a</sub> are the generators (matrices) of the group SU(3)
  [t<sub>a</sub>, t<sub>b</sub>] = if<sub>abc</sub>t<sub>c</sub>
- interaction (force) carriers: 8 massless spin-1 gluons in the 8-dim representation of *SU*(3).
- hadrons are color-singlet (ie not colored) combinations of quarks, anti-quarks and gluons

## QCD vs QED

#### QED

Quantum theory of electromagnetic interactions, mediated by exchange of photons.

Photon couples to electric charge *e* Coupling strength  $\propto e \propto \sqrt{\alpha}$ 

#### QCD

Quantum theory of strong interactions, mediated by exchange of gluons between quarks. Gluon couples to colour charge of quark Coupling strength is  $\propto \sqrt{\alpha_s}$ 

#### Fundamental vertices QED



#### QCD



Coupling constants: coupling strength of  $QCD \gg QED$ 

#### COLOR FORCE AND QUARK POTENTIALS

Between 2 quarks at distance  $r \sim O(1)$ fm) define a string with tension k and a potential V(r) = kr.

Stored energy/unit length is constant and separation of quarks requires infinite amount of energy.

**QCD** Potential QED-like at short distance  $r \leq 0.1 fm$ . String tension

- potential increases linearly at large distance  $r \ge 1 fm$ .



Force between 2 quarks at large distance is  $|dV/dr| = k = 1.6 \times 10^{-10} \text{J}/10^{-15} \text{m} = 16000 \text{N}$  or equivalent to the weight of a car!

This stored energy gives the proton its mass (and not the Higgs as you sometimes hear)! Recall  $m_u + m_d \sim 9$ MeV but  $m_{proton} = 938$ MeV

#### THE RUNNING **QCD** COUPLING

In QED,  $\alpha$  varies with distance - running and the bare  $e^-$  is *screened* at large distances - reducing.

The same but different in **QCD** where *anti-screening* dominates!

⇒ At large distances (low energies)  $\alpha_5 \sim 1$  i.e. large. Higher-order diagrams -  $\alpha_5$  increasingly larger, summation of diagrams diverges ... perturbation theory fails.

#### Asymptotic freedom

Coupling constant is small at high energies i.e. energetic quarks are (almost) free. QCD perturbation theory works!







Nobel prize 2004 for Gross, Politzer and Wilczek.

### QCD: MAKING CALCULATIONS

There are two regimes:

#### Deep inside the proton

- at short distances quarks behave as free particles
- weak coupling
- ⇒ perturbation theory works

#### At "observable" (hadronic) distances

- at long distance (1fm) quarks confined
- strong coupling
- ⇒ perturbation theory fails: nonperturbative approach needed.

#### CONSEQUENCES OF STRONG DYNAMICS

The strong-coupling and nature of gluons  $\Rightarrow$  interesting particles can appear

- quark condensates
- glueballs
- hybrids

| INTRODUCTION | QCD | THEORETICAL TOOLS | SUMMARY |
|--------------|-----|-------------------|---------|
|              | 000 | 000000000         |         |
|              |     |                   |         |

### GLUEBALLS

Gluons couple strongly to each other

$$\mathcal{L}_{gauge} = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a, \ F_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{abc} A^b_\mu A^c_\nu$$

- expect a spectrum of gluonic excitations
- possible even in a theory without quarks i.e. "pure Yang-Mills"
- particles are called glueballs
- lattice predictions ...



Morningstar & Peardon

In full **QCD** glueballs much more complicated.

- same quantum numbers as isospin 0 mesons
- mix with lots of things!

### HYBRID MESONS

States with quarks and excited gluonic field content [ $q\bar{q}g$ ].

- a better chance to see gluonic excitations at experiments
- the signal is exotic:  $J_{q\bar{q}}^{PC} \otimes J_{glue}^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, \dots$
- lattice is providing model-independent simulations now ...
- on the shopping list at GlueX and PANDA



HadSpec Collab

### **Quark Models**

| INTRODUCTION | QCD | THEORETICAL TOOLS | SUMMARY |
|--------------|-----|-------------------|---------|
|              | 000 | 000000000         |         |
|              |     |                   |         |

#### CLASSIFYING STATES: MESONS

- Recall that continuum states are classified by *J<sup>PC</sup>* multiplets (representations of the poincare symmetry):
  - Recall the naming scheme:  $n^{2S+1}L_J$  with  $S = \{0, 1\}$  and  $L = \{0, 1, ...\}$
  - *J*, hadron angular momentum,  $|L S| \le J \le |L + S|$
  - $P = (-1)^{(L+1)}$ , parity
  - $C = (-1)^{(L+S)}$ , charge conjugation. Only for  $q\bar{q}$  states of same quark and antiquark flavour. So, not a good quantum number for eg heavy-light mesons  $(D_{(s)}, B_{(s)})$ .

| INTRODUCTION | QCD<br>000 | Theoretical Tools<br>000000000 | SUMMARY |
|--------------|------------|--------------------------------|---------|
|              |            |                                |         |

#### Mesons

- two spin-half fermions <sup>25+1</sup>L<sub>J</sub>
- *S* = 0 for antiparallel quark spins and *S* = 1 for parallel quark spins;



• States in the natural spin-parity series have  $P = (-1)^{1}$  then S = 1 and CP = +1:

•  $J^{PC} = 0^{-+}, 0^{++}, 1^{--}, 1^{+-}, 2^{--}, 2^{-+}, \dots$  allowed

- States with  $P = (-1)^{j}$  but CP = -1 forbidden in  $q\bar{q}$  model of mesons:
  - $J^{PC} = 0^{+-}, 0^{--}, 1^{-+}, 2^{+-}, 3^{-+}, \dots$  forbidden (by quark model rules)
  - These are **EXOTIC** states: not just a  $q\bar{q}$  pair ...

### Methods for calculating in QCD

### EFT SUMMARY

- The basic ideas underpinning EFTs: separate physics at different scales; identify approprite degrees of freedom
- Implement the consequences of symmetries
- EFT allows you to compute using dimensional analysis even if the underlying theory is unknown
- EFT a powerful tool for probing **QCD** and hadron spectroscopy

#### Keep in mind ...

- in some cases the full theory (QCD) cannot be formally recovered i.e. the EFT is nonrenormalisable e.g. lattice NRQCD.
- the effective theory is a good description of some regime in **QCD** of interest but cannot predict/describe beyond that.
- accuracy/precision physics needs a robust expansion as well as a reliable estimate of systematic uncertainties.

#### POTENTIAL MODELS



Many models exist, most have a similar set of ingredients: The (confining) potl assumed from phenomenological arguments and might be extracted from data or a lattice. With EFTs gives a useful tool. Particularly effective for understanding particular regimes (e.g. quarkonia) or states (e.g. XYZ)



#### Keep in mind

Relies on an assumed potential. There are many choices and some discrimination is needed.

Not a systematic approach to full QCD

| INTRODUCTION | QCD<br>000 | THEORETICAL TOOLS | SUMMARY |
|--------------|------------|-------------------|---------|
| In OCD       |            |                   |         |

$$Z_{\mathbf{QCD}} = \int \mathcal{D}\bar{q}\mathcal{D}q\mathcal{D}A_{\mu}e^{i\int d^{4}x\bar{q}(i\gamma^{\mu}\partial_{\mu}-m)q+g\bar{q}\gamma^{\mu}t_{a}qA_{\mu}^{a}-\frac{1}{4}F_{\mu\nu}^{a}F_{a}^{\mu\nu}}$$

and now  $\mathcal{D}\bar{q}\mathcal{D}q\mathcal{D}A_{\mu}$  represent an infinite number of d.o.f. that is the field strength at every point in continuous spacetime.

- make the number of degrees of freedom finite then the integral is tractable
  - this is Lattice **QCD**
  - discretise spacetime on a grid of points of finite extent (L), with finite grid spacing (a).

What symmetries are lost and what is the effect?

| INTRODUCTION        | QCD | THEORETICAL TOOLS | SUMMARY |
|---------------------|-----|-------------------|---------|
|                     | 000 | 00000000          |         |
|                     |     |                   |         |
| In <mark>QCD</mark> |     |                   |         |

$$Z_{\text{QCD}} = \int \mathcal{D}\bar{q}\mathcal{D}q\mathcal{D}A_{\mu}e^{i\int d^{4}x\bar{q}(i\gamma^{\mu}\partial_{\mu}-m)q+g\bar{q}\gamma^{\mu}t_{a}qA_{\mu}^{a}-\frac{1}{4}F_{\mu\nu}^{a}F_{a}^{\mu\nu}}$$

and now  $\mathcal{D}\bar{q}\mathcal{D}q\mathcal{D}A_{\mu}$  represent an infinite number of d.o.f. that is the field strength at every point in continuous spacetime.

- make the number of degrees of freedom finite then the integral is tractable
  - this is Lattice **QCD**
  - discretise spacetime on a grid of points of finite extent (L), with finite grid spacing (a).

#### What symmetries are lost and what is the effect?



QCD

#### RECOVERING CONTINUUM QCD





| INTRODUCTION | QCD | THEORETICAL TOOLS | SUMMARY |
|--------------|-----|-------------------|---------|
|              | 000 | 000000000         |         |
|              |     |                   |         |

### PRACTICAL LQCD

- Consider gluons on links of the lattice i.e.  $U_{\mu}(x) = e^{-\alpha A_{\mu}(x)}$ . Quark fields on sites.
- Discretise derivatives with finite differences e.g. in 1-dim

$$\frac{df}{dx} = \frac{f(x+a) - f(x-a)}{2a} + \mathcal{O}(a^2)$$

*Exercise: Write a 1-dim derivative correct to*  $O(a^4)$ *.* 

• Many ways to discretise fermions and you will hear many philosophies ...

- Wilson, Clover
- Staggered, asqtad, HISQ
- Domain wall, overlap



### MAKING CALCULATIONS

- If e<sup>i∫d<sup>4</sup>xL</sup> real then treat as a probability and use stochastic estimation (Monte Carlo) to estimate the integral
- Rotate to Euclidean time:  $t \to i\tau$ ;  $i \int d^4 x \mathcal{L} \to -i \int d^4 x \tilde{\mathcal{L}}$
- An observable looks like

$$\langle \mathcal{O} \rangle = \int \mathcal{D}\bar{q}\mathcal{D}q\mathcal{D}U\mathcal{O}e^{-S[q,\bar{q},U]}$$

• Fermion fields integrate exactly,  $\int D\bar{q}Dqe^{-\bar{q}_iQ_{ij}q_j} = \det Q$  leaving something like

$$\langle \bar{q}_{x}(t')\Gamma'q_{x}(t')\cdot\bar{q}_{y}(t)\Gamma q_{y}(t)\rangle = \int \mathcal{D}UQ_{x,y}^{-1}\Gamma'Q_{y,x}'\Gamma \det Q[U]e^{-S_{gauge}[U]}$$

- Notice det *Q*[*U*]*e*<sup>-*S*gauge</sup>[*U*] looks like a probability weight so generate gauge field configurations according to this and save them.
- An observable (two point function) is then  $\sum_{\{U\}} Q_{xy}^{-1} \Gamma' Q_{y,x}^{-1} \Gamma$

### WHY DOES LQCD NEED BIG COMPUTERS??

- need *detQ* for gauge field ensembles. What does *Q* look like?
  - a lattice might have  $24 \times 24 \times 24 \times 128 = 1.8 \times 10^6$  sites
  - a fermion (quark) has 4 Dirac components and 3 colours in SU(3)
  - $\Rightarrow$  a sparse matrix of size  $(2 \times 10^7) \times (2 \times 10^7)$
  - storage space alone = 6.4 PetaBytes!
- once the gauge configurations are generated just have to invert the Dirac matrix *Q* to get the fermion propagators ...





#### Keep in mind in addition to statistical errors:

• Lattice artefacts

$$\left.\frac{m_N}{m_\Omega}\right|_{lat} = \left.\frac{m_N}{m_\Omega}\right|_{cont} + \mathcal{O}(a^p), \ p \ge 1$$

requires extrapolation to the continuum limit,  $a \rightarrow 0$ 

- Finite volume effects
  - Energy measurements can be distorted by the finite box
  - Rule of thumb:  $m_{\pi}L > 3$  ok for many things ...
- Unphysically heavy pions
  - Simulations at physical pion mass started but most calculations rely on chiral extrapolation to reach physical  $m_u$ ,  $m_d$
  - Use Chiral Perturbation Theory to guide the extrapolations. Are chiral corrections reliably described by ChPT?
- Fitting
  - Uncertainties from the choice of fit range, *t*<sub>0</sub> etc.

### LQCD AND SPECTROSCOPY

Huge progress in the last 5 years. (With the caveats mentioned)

- Understood how to determine the excited and exotic (hybrid) spectra of states from light to heavy; including isoscalars and up to spin 4.
- First results from studies of the XYZ states in charmonium and *Dπ*, *DK* scattering.
- Huge strides made on scattering and resonance calculations.  $\rho \rightarrow \pi\pi$  phase shift determined; partial wave mixing analyses ...
- Understood how to tackle coupled-channels: results for two coupled channels, theory and proof of concept for three ...

Why was this such a problem?

 $t \rightarrow i\tau$  allows computation but loses direct info on scattering. New theoretical ideas mean now know how to retrieve this.



charmonium

 $\rho \rightarrow \pi \pi$ 



 $k\pi$  scattering

HadSpec results

# I hope this has been useful THANKS FOR LISTENING!

| INTRODUCTION | QCD | THEORETICAL TOOLS | SUMMARY |
|--------------|-----|-------------------|---------|
|              | 000 | 000000000         |         |
|              |     |                   |         |

### LAST COMMENT ON SINGLE-HADRON SPECTRUM

Disconnected diagrams a remaining uncertainty in most  $C\bar{C}$  calculations.

Distillation allows precision determination. BUT it's a can of worms!

| INTRODUCTION | QCD<br>000 | Theoretical Tools<br>0000000000 | SUMMARY |
|--------------|------------|---------------------------------|---------|
|              |            |                                 |         |

### LAST COMMENT ON SINGLE-HADRON SPECTRUM

Disconnected diagrams a remaining uncertainty in most  $c\bar{c}$  calculations.

Distillation allows precision determination. BUT it's a can of worms!



from HadSpec

ARY ...

### WHAT'S THE PLOT?



#### Distillation

- A new approach to quark propagation by redefining smearing as a projection operator
- Basis vectors of the distillation operator (lattice laplacian) look like confining blobs