Operateursschulung Betrieb 1/2016

EZR-Ionenquellen (ECRIS)

K. Tinschert, R. Lang, J. Mäder, F. Maimone

Grundlagen

ECRIS = Electron Cyclotron Resonance Ion Source

Grundprinzip

Ionenquelle

Erzeugung des EZR-Plasmas

Anfangs existiert eine geringe Anzahl freier Elektronen

Die Erzeugung hoher Ladungszustände ist ein stufenweiser Prozess, der hinreichend lange Einschlußzeiten und Elektronendichten bedingt

Hinreichend energetische Elektronen ionisieren die Gas-Atome und erzeugen ein Plasma

Elektronen rotieren auf einer Schraubenbahn um die Magnetfeldlinien mit der Zyklotronfrequenz $\omega_{ECR} = \frac{e}{m} \mathbf{B}$

Eine zirkular polarisierte elektromagnetische Welle überträgt Energie auf die Elektronen durch die Elektron-Zyklotronresonanz $\omega_{RF} = \omega_{ECR}$

Charge enhancing processes

Direct single electron impact ionization

 $A^{q+} + e^{-} \rightarrow A^{(q+1)+} + 2 e^{-}$

Direct multiple electron impact ionization

 $A^{q+} + e^{-} \rightarrow A^{(q+n)+} + (n+1) e^{-}$

Excitation-Autoionization

 $A^{q+} + e^{-} \rightarrow A^{q+*} + e^{-}$

- $A^{q+*} \rightarrow A^{(q+1)+} + e^{-}$
- Auger process
 - $A^{q+} + e^{-} \rightarrow A^{(q+1)+*} + 2 e^{-}$
 - $A^{(q+1)+*} \rightarrow A^{(q+m)+} + (m-1) e^{-}$
- Photoionization

 $A^{q+} + hv \rightarrow A^{(q+1)+} + e^{-}$

Elektronenstoßionisation

Charge decreasing processes

- Single charge exchange process electron capture
 A^{q+} + B → A^{(q-1)+} + B⁺
- Multiple charge exchange process electron capture
 A^{q+} + B → A^{(q-n)+} + Bⁿ⁺
- Radiative recombination $A^{(q+1)+} + e^{-} \rightarrow A^{q+} + hv$
- Dielectronic recombination with radiative stabilisation $A^{(q+1)+} + e^{-} \rightarrow A^{q+**} \rightarrow A^{q+*} + hv$
- → dynamic equilibrium → charge state distribution

ECRIS – Plasmaheizung der Elektronen

- kein Filament und keine Bogenspannung
 Hochfrequenz
- Zyklotronbewegung: Rotation um den \vec{B} -Feldvektor
- → Zyklotronradius r_c bei B = 0.6 T: e^- (1000 eV) → $r_c \approx 0.2$ mm

Ar⁸⁺ (10 eV) → $r_c \approx 0.6$ mm

→ typische Werte für r_c sind klein gegenüber dem Radius der Plasmakammer (32 mm)

- E-Feld der Mikrowelle → Kraft auf geladene Teilchen
- Beschleunigung oder Abbremsung je nach Phasenwinkel zwischen Feldvektor der Welle und der Rotationsgeschwindigkeit des Elektrons
- → Sehr effektiver Energieübertrag, wenn $\omega_{RF} = \omega_{ECR}$ und $\Delta \phi = \pi$

Statistisch verteilte Phasenwinkel, aber:

- → Im Mittel gewinnen die Elektronen Energie
- ➔ stochastisches Heizen

Aufgrund ihrer Masse werden die Ionen nicht geheizt -> selektiver Prozeß

8

ECRIS – Plasmaeinschluß

Longitudinaler Einschluß

Magnetisches Spiegelfeld: 2 oder 3 axiale Solenoidspulen → 2 Spulen gleicher Polarität,

 ggf. eine mittlere Spule entgegengesetzter Polarität

Bahn eines Teilchens im magnetischen Spiegelfeld

ECRIS – Plasmaeinschluß

Radialer Einschluß

Magnetisches Multipolfeld: Quadrupol, Hexapol, Oktupol, Dekapol ...

Der magnetische Einschluß ist nicht perfekt und wird genutzt, um Ionenstrahl zu extrahieren

B-Feld von Achse ansteigend $\,B\sim r^2$

 B_{res} (14.5 GHz) = 0.52 T

ECRIS – Resonanzbedingung

ECRIS – Plasma

Photo: F. Meyer, ORNL

ECRIS – Verlustlinien im Plasma

Plasmakammer

Plasmaelektrode

Accel-decel ion extraction systems

ECRIS ion extraction – simulation

Kobra-INP-simulation, P. Spädtke

Space charge compensation

Electrostatic space charge potential of a cylindrical ion beam:

 $\Phi \sim I/v$

- Self magnetic field of a low energy ion beam can be neglected
- Example: Ar¹⁺-beam of 10 emA accelerated to 30 keV

→ doubles its diameter after 20 cm

- Experimental experience: strong diverging force of the spacecharge is not present
 - → high degree of space-charge compensation
- Possible sources of compensating electrons:

residual gas molecules, sputtering, secondary sources

16

ECRIS - Parameter

Konventionelle ECRIS (typ. Parameter):

Hexapol B-Feld Solenoid B-Feld µW-Leistung µW-Frequenz Gasdruck Gasverbrauch Stromdichte Elektronenenergie

1...1,2 T 0,8...1,5 T 50...800 W (cw mode) 6,4...18 GHz 10^{-6} ...10⁻⁴ mbar 0.1...1 scm³/h 1 mA/cm² bis ≈ 200 keV

ECRIS - Eigenschaften

- Keine Filamente

 reduzierte Wartung
- Geringer Verbrauch an Betriebsgas → lange Standzeit
- Effektive thermische Verdampfung metallischer Elemente

 Iange Standzeit
- Geringer Materialverbrauch

 hohe Effizienz
- Gute Langzeitstabilität
- Hohe Ladungszustände
 INAC-Injektion ohne Nachbeschleunigung
- CW-Betrieb
 keine Limitierung des duty cycles
- Moderate Intensitäten (25...500 µA)
- Lange Inbetriebnahmezeiten

ECRIS ist gut geeignet f
ür lange Strahlzeiten unter stabilen Betriebsbedingungen

ECRIS - Anwendung

- Produktion hochgeladener Ionen zunächst für Experimente in der Atomphysik und zur Messung relevanter Daten für die Fusionsforschung
- Zunehmend Verwendung als Ionenquelle f
 ür Ionenbeschleuniger
- CW-Betrieb optimal f
 ür Zyklotrons
- CW- und Pulsbetrieb für LINAC-Strukturen unterschiedlichen duty cycles
- Mittlerweile meistverwendete Quelle an Ionenbeschleunigern
 - Stetig steigende Intensitätsanforderungen

Praxis

CAPRICE =

Compacte A Plusieurs Résonances Ionisantes Cyclotron Electroniques

GSI CAPRICE ECRIS (Generation 2)

 Technical standard of 1990-93 and status quo until now at GSI
 Continuously improved oven technology

Foto : A. Zschau GSI

Februar 2016

CAPRICE Hexapol 1.2 T

Durchmesser außen: 242 mm

Länge: 171 mm

CAPRICE Solenoidspulen Pancake-Stack

AD = 360 mm ID = 95 mm

CAPRICE Solenoidspulen ohne Kühlung

HLI – LEBT

Aufnahme von 2013

Stahlprofil und Gitter

Ion beams from CAPRICE ECRIS

HLI – Auswahl verfügbarer Ionensorten

• Gase:

¹H₂¹⁺, C²⁺ (CO₂), ^{16,18}O³⁺, ^{20,22}Ne⁴⁺, ^{32,34,36}S^{5+,6+} (SO₂), ³⁶Ar^{5+,6+,8+}, ⁴⁰Ar^{6+,7+,8+}, ^{84,86}Kr¹²⁺, ¹²⁴Xe^{15+,16+}, ^{129,136}Xe^{18+,19+},

Metalle

^{6,7}Li¹⁺, ^{24,25,26}Mg^{4+,5+}, ^{28,30}Si⁶⁺ (SiO), , ⁴⁰Ca^{6+,7+}, ⁴⁸Ca^{7+,10+}, V⁸⁺, ^{50,52,54}Cr^{7+,8+}, ⁵⁸Fe^{8+,9+}, ^{58,62,64}Ni^{8+,9+}, ^{68,70}Zn¹⁰⁺ (ZnO), ¹⁰⁷Ag¹⁵⁺, ^{112,114}Sn¹⁵⁺, ^{118,124}Sn¹⁶⁺, Au²⁴⁺, ^{206,208}Pb²⁷⁺

→ Verdampfungsfähige Feststoffe (Metalle) – Dampfdruck von 10⁻² mbar bei T < 1600°C bei Standard-Ofen (STO), bzw. T < 2000°C bei Hochtemperatur-Ofen (HTO)

Standard-Ofen (STO)

Für nicht gasförmig vorliegenden Elemente (hauptsächlich Metalle)

Aufbau:

- Zentrale Stromzuführung
- Heizwendel auf Keramikkörper
- Gekühlte Schubstange
- Tiegel oder Verschlußring

Ofenbetrieb:

- Leistung: 2-120W
- Temperatur: 400 -1550°C
- Verbrauch: 0,2 5 mg/h
- Standzeiten: ${}^{48}Ca \le 30$ Tage, ${}^{64}Ni$ 6 Tage, ${}^{50}Ti$ 4 Tage

⁴⁸Ca¹⁰⁺ hot liner

Hot liner for Ca, Mg $\ell = 165 \text{ mm}$

⁴⁸Ca¹⁰⁺ beam time

Beam time in 2005: April, 5th until June, 9th

- Ion charge state: ⁴⁸Ca¹⁰⁺
- Average intensity: 100 ... 140 eµA
- Total run time: 1500 hours
- 3 refillings of standard oven STO
- Material consumption without recycling: 0.5 mg/h
- Material consumption with recycling: 0.2 mg/h
- Efficiency material to ion beam: > 50 % (due to hot liner)

Spectrum during ⁴⁸**Ca**¹⁰⁺ **beam time**

Februar 2016

Intensity of ⁴⁸Ca¹⁰⁺ over 24 hours

79658 pulses in 24 hours read out

Februar 2016

-

Plasmakammer im Langzeitbetrieb

Plasma-Elektrode nach Neonbetrieb

Calcium-Plasma

HLIigcan

Plasma-Kammer nach Neonbetrieb

Plasmakammer im Langzeitbetrieb

Plasma-Elektrode nach Nickelbetrieb

Plasma-Kammer nach Nickelbetrieb

Mikrowellentechnik

Quellentuning mit Abstimmkolben zur Minimierung der reflektierten Mikrowellenleistung

HLI Microwave System Upgrade

Block diagram: main components of the microwave injection system at HLI

• WR62 Waveguide 1.5 kW Power Combiner

HLI Microwave System Upgrade

HLI Microwave Tuning

3-9 Nov 2015: Kr¹³⁺ beam for testing the ROSE 4D emittance measurement system.

KRIPTON CHARGE STATE	ION CURRENT AT 14.444 GHz [μΑ]	ION CURRENT AT 14.464 GHz [µA]	ION CURRENT AT 14.500 GHz [µA]
6+	7.9	8.7	9.7
7+	9	10.6	12.2
8+	13.9	17.5	21.5
9+	19.4	24.2	28.6
10+	23.5	28.1	31
11+	26.1	30.9	30.3
12+	30.6	33.3	28.7
13+	29.5	29.8	21.2
14+	27.8	25.7	15.6
15+	21.3	17.8	7.7
16+	13.7	10	3.4
17+	7.8	5	1.2
18+	4.4	3.2	0.8
19+	1.6	0.8	0.1

UN3DT1 – Makropuls-Signal

Kuriositäten – Intensitätsmodulation

Periode T≈ 1.4 min

G 🚝 1

27.4.2010 10:44:35

Spektrum ¹²C

GSX-

Spektrum ⁴⁸Ca

Massenspektrum

HLI

gemessen am 22-JUN-2010 16:09

U05 48CA 10+

GSĬ

Februar 2016

GSI.

GSX-

GSI.

IQ_L – GUI

IQ_L - GUI

Diskussion

Hinweise zum Betrieb

- Anfahren der Quelle mit erprobten Prozeduren mittels bewährter Parametersätze durch EZR-Team
- CW-Dauerbetrieb der ECRIS (Makro-Puls-Struktur des Strahls erzeugt durch den Chopper)
- Gasbetrieb simpel, viele Metalle auch, schwierig sind Ca, Mg, Ti und einige Sonderfälle von Isotopenmaterialien
- Fremdgase (Verunreinigungen) können (wie das absichtlich zugeführte Hilfsgas) einen erheblichen Einfluß auf das Quellenverhalten haben (Spektrum)
- Optische Kontrolle des Quellenplasmas oder des Ofens mit einer Videokamera
 Wichtig bei Ca

 Änderungen des Bildes deuten auf bevorstehende Instabilitäten oder Intensitätsänderungen hin
- Die Quelle reagiert nicht immer gleich auf gleichartige Ma
 ßnahmen (IQ-Programm)
- Oft führen geringe Parameteränderungen im IQ-Programm bereits zu sprunghaftem Verhalten des Ionenstroms
- Das EZR-Plasma zeigt Schwingungen vielfältiger Art, die sich in entsprechenden Intensitätsschwankungen des Strahls widerspiegeln. Beruhigung des Plasmas durch Variieren der Quelleneinstellung (Optimierung)
- Vorsicht bei Ofenbetrieb: Die Verdampfungsgeschwindigkeit steigt rapide mit der Ofentemperatur (Heizstrom)
- Quellentuning mit Abstimmkolben zur Minimierung der reflektierten Mikrowellenleistung (LSB3)

Hinweise zum Betrieb

Strahl weg, was nun?

- → Chopper, UN3DC1, Interlock wirkt auf Chopper, save gesetzt, Dipol verfahren
- Übereinkunft: tägliche Anweisung für die Nacht
- Im RB-Fall erst immer QL (HLI-EZR-Quelle Operating-RB) anrufen und Maßnahmen festlegen.
- Gegebenenfalls wird von der RB die Unterstützung einer Person vor Ort benötigt.
- Am Ende der Strahlzeit nicht alles sofort abschalten es soll am Strahlzeitende noch ein Spektrum aufgenommen werden f
 ür die Dokumentation