Introduction to Accelerator Physics

D. Ondreka, GSI
Operator Training 2016

Outline

- Introduction
- Particles and units
- Relativity
- Charged particles in fields
- Magnets
- Charged particle dynamics
- Emittance and acceptance

Experimenters wishes

- What are these fancy symbols here about: $\mathrm{p}, \mathrm{Au}, \mathrm{N}, \mathrm{Ni}$?
- What do these funny numbers mean: $3.6 \mathrm{MeV} / \mathrm{u}, 300-1000 \mathrm{MeV} / \mathrm{u}, 1 \mathrm{e} 8 /$ spill ?
- What do our accelerators have to do with all this?

Elements and Isotopes

- Elements
- atomic building blocks of matter
- characterized by atomic number Z
- number of protons in nucleus and electrons in neutral atom
- one-to-one correspondence to chemical symbol X
- Isotopes
- variants of the same element with different number N of neutrons
- identified by mass number $\mathrm{A}=\mathrm{Z}+\mathrm{N}$
- same electron configuration, hence same chemical properties
- only few isotopes stable
- Notation

AX

	Z	A	N	Abundance
${ }^{40} \mathrm{Ca}$	20	40	20	96.9%
${ }^{48} \mathrm{Ca}$	20	48	28	0.2%

Elements

Periodensystem der Elemente

(Source: http://www.pctheory.uni-ulm.de/didactics/quantenchemie/html/PSE-F.html)
Ordering of elements according to atomic number Z and electron configuration

Isotopes

Source: http://moriond.in2p3.fr/radio/moriond-huyse.ppt
Ordering of elements according to proton number Z and neutron number N

Ions

- Acceleration requires charged particles (we'll come to that...)
- Ions
- created by removing electrons from atoms (or molecules)
- characterized by their charge state Q
- notation for ions of atoms (i.e. isotopes)

	Z	Q	\#electrons
${ }^{48} \mathrm{Ca}$	20	0	20
${ }^{48} \mathrm{Ca}^{10+}$	20	10	10

- notation for molecules similar
- examples: $\mathrm{H}_{2}{ }^{+}, \mathrm{H}_{3}{ }^{+}, \mathrm{CH}_{3}{ }^{+}$
- creation of ions from neutral particles in ion sources
- increasing of charge state by stripping in gas or foils

Ion Masses

- Acceleration of ions depends on mass of ion
- Need to know the masses of ions
- SI units impractical:
$-\mathrm{m}_{\mathrm{p}} \approx \mathrm{m}_{\mathrm{n}} \approx 1.7 \cdot 10^{-27} \mathrm{~kg}$
- Atomic mass units (AMU)
- definition of atomic mass unit:

$$
\mathrm{m}\left({ }^{12} \mathrm{C}\right)=12 \mathrm{u}=\mathrm{A} \cdot \mathrm{u}
$$

	SI units	AMU	ME
u	$1.661 \cdot 10^{-27} \mathrm{~kg}$	1 u	0
$\mathrm{~m}_{\mathrm{p}}$	$1.672 \cdot 10^{-27} \mathrm{~kg}$	1.007 u	0.007
$\mathrm{~m}_{\mathrm{n}}$	$1.675 \cdot 10^{-27} \mathrm{~kg}$	1.009 u	0.009
$m\left({ }^{(12} \mathrm{C}\right)$	$1.993 \cdot 10^{-26} \mathrm{~kg}$	12 u	0
$m\left({ }^{48} \mathrm{Ca}\right)$	$7.965 \cdot 10^{-26} \mathrm{~kg}$	47.953 u	-0.047
m_{e}	$9.109 \cdot 10^{-31} \mathrm{~kg}$	$5.5 \cdot 10^{-4} \mathrm{u}$	n.d.

- for general isotopes we define a mass number M :

$$
m\left({ }^{A} X\right)=M \cdot u \approx A \cdot u
$$

- small difference between A and M :
- mass excess $M E: M=A+M E \quad M E / M<0,1 \%$ (except e.g. $p, d)$ but this is the origin of nuclear power...
- missing electrons for ions: $m\left({ }^{A} X^{Q}\right)=\left(M-Q \cdot A_{e}\right) \cdot u \quad Z \cdot A_{e} / M<0,05 \%$
- significant for high precision exp. (e.g. mass measurements in storage rings)

Ion Energies

- Experimentalists require ions with a certain kinetic energy
- usually specified as kinetic energy per atomic mass unit
- example: ${ }^{238} \mathrm{U}^{73+}, \mathrm{E}=1 \mathrm{GeV} / \mathrm{u}, \mathrm{N}_{\text {ions }}=10^{9}$ particles
- what's this mysterious 'GeV'?
- elementary charge: $e=1.602 \cdot 10^{-19} \mathrm{C}$ charge of proton and electron (up to sign)
- when pushed by a voltage of 1 V , a particle with charge e gains energy 1 eV
- in SI units: $1 \mathrm{eV}=1.602 \cdot 10^{-19} \mathrm{~J}$
- prefixes for saving digits: $1000 \mathrm{eV}=1 \mathrm{keV}, 1000 \mathrm{keV}=1 \mathrm{MeV}, 1000 \mathrm{MeV}=1 \mathrm{GeV}$
- what's the kinetic energy of the beam in the example?
- $A=238, M E=0.05 u, Q=73 \rightarrow M=238.01, m=M \cdot u$
- $\mathrm{E}_{\text {ion }}=\mathrm{M} \cdot \mathrm{u} \cdot \mathrm{E}=238.01 \mathrm{GeV}$
- $E_{\text {beam }}=N_{\text {ions }}$. $\mathrm{E}_{\text {ion }}=10^{9} \cdot 238.01 \mathrm{GeV}=238.01 \cdot 10^{18} \mathrm{eV} \approx 40 \mathrm{~J}$
- kinetic energy of a walking man: $E=1 / 2 \cdot \mathrm{~m} \cdot \mathrm{v}^{2}=1 / 2 \cdot 80 \mathrm{~kg} \cdot 1(\mathrm{~m} / \mathrm{s})^{2}=40 \mathrm{~J}$
- if deposited in 1 ml of water: heating by 10 degrees, dose 40000Gy

Relativity: Mass and Energy

- Mass and energy are equivalent

$$
\mathrm{E}=\mathrm{mc}^{2}
$$

- What's the energy of a mass unit?
- speed of light (constant of nature):

$$
\mathrm{c}=299792458 \mathrm{~m} / \mathrm{s}
$$

- energy of 1 u :

- $u \cdot c^{2} \approx 1.661 \cdot 10^{-27} \mathrm{~kg} \cdot\left(2.998 \cdot 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2} \approx 1.4925 \cdot 10^{-8} \mathrm{~J}$
- $1 \mathrm{eV} \approx 1.602 \cdot 10^{-19} \mathrm{~J}$
- $u \cdot c^{2} \approx 931.6 \cdot 10^{6} \mathrm{eV}$
- precise value: $u \cdot c^{2}=931.494 \mathrm{MeV}$
- Expression of masses as energies in convenient units
- consider ${ }^{238} \mathrm{U}^{73+}: \mathrm{m} \cdot \mathrm{c}^{2}=\mathrm{M} \cdot \mathrm{u} \cdot \mathrm{c}^{2}=238.01 \cdot \mathrm{u} \cdot \mathrm{c}^{2}=221.7 \mathrm{GeV}$
- also written as: $\mathrm{m}=221.7 \mathrm{GeV} / \mathrm{c}^{2}$

Relativity: Energy

- Energy equivalent to mass is referred to as rest energy
- will use symbol E_{0} from now on: $E_{0}=m c^{2}=M \cdot u c^{2}$
- use special symbol E_{u} for amu: $E_{u}=u c^{2}$
- Kinetic energy of ion always proportional to mass
- write kinetic energy as: $\mathrm{E}_{\text {ion }}=\mathrm{M} \cdot \mathrm{E}$
- E is referred to as kinetic energy per nucleon (or per atomic mass unit)
- Total energy is the sum of rest and kinetic energy
- again proportional to mass:

$$
M \cdot E_{\text {tot }}=M \cdot\left(E+E_{u}\right)
$$

- Comparison of total energy to rest energy
- defines the relativistic gamma: $\gamma=E_{\text {tot }} / E_{u}=1+E / E_{u}$
- examples:
- injection into SIS18: $\mathrm{E}=11.4 \mathrm{MeV} / \mathrm{u} \rightarrow \mathrm{Y}=1+11.4 / 931.5=1.01$
- extraction from SIS18: $\mathrm{E}=1 \mathrm{GeV} / \mathrm{u} \rightarrow \mathrm{Y}=1+1000 / 931.5=2.07$

Relativity: Velocity

- Velocity expressed in units of the speed of light
- defines relativistic beta: $v=\beta \cdot c$
- Gamma and beta are related
- Lorentz factor: $\quad \gamma=1 / V\left(1-\beta^{2}\right)$
- can be inverted: $\beta=v\left(1-1 / \gamma^{2}\right)$
- Velocity bound by speed of light
- Look again at $\mathrm{Y}=1+\mathrm{E} / \mathrm{E}_{\mathrm{u}}$
- $E=0 \rightarrow \gamma=1 \rightarrow \beta=0$
- $\mathrm{E} \mathrm{->} \mathrm{\infty} \rightarrow \mathrm{y}^{->\infty} \rightarrow \beta->1$
- range of beta: $0 \leq \beta<1$
- Ions never reach the speed of light

- but they can come quite close:
(e.g. p@LHC: $E=7 T e V, \gamma \approx 7500,1-\beta \approx 10^{-8}$)

Relativity: Momentum

- Momentum is an important kinematical quantity
- conserved if no forces act on the particle
- deflection in a magnet is proportional to momentum (we'll come to that...)
- Related to the other relativistic parameters
- proportional to mass: $\mathrm{p}_{\text {ion }}=\mathrm{M} \cdot \mathrm{p}$
- non-linear relation to velocity: $p c=\gamma \cdot \beta \cdot E_{u}=\beta / v\left(1-\beta^{2}\right) \cdot E_{u}$
- non-linear relation to energy: $\quad \mathrm{pc}=\mathrm{V}\left(\mathrm{E} \cdot\left(\mathrm{E}+2 \cdot \mathrm{E}_{\mathrm{u}}\right)\right)$
- example: $\mathrm{E}=1 \mathrm{GeV} \rightarrow \mathrm{pc}=1692 \mathrm{GeV}$ or $\mathrm{p}=1692 \mathrm{GeV} / \mathrm{c}$ bere wevévonited the / for comenenene..

Relativity: Non-Relativistic Limit

- Newton's physics recovered for small energies
- Newton's relations for momentum:

$$
p=u \cdot v \quad p=v(2 \cdot u \cdot E)
$$

- check of velocity relation:
- let $\beta \rightarrow 0 \rightarrow p c=\beta / \sqrt{ }\left(1-\beta^{2}\right) \cdot E_{u}->\beta \cdot E_{u}=c \cdot u \cdot \beta c=c \cdot u \cdot v$
- check of energy relation:
- let $E \rightarrow 0 \rightarrow p c=\sqrt{ }\left(E \cdot\left(E+2 \cdot E_{u}\right)\right)->\sqrt{ }\left(2 \cdot E_{u} \cdot E\right)=c \sqrt{ }(2 \cdot u \cdot E)$

- How far does Newton's arm reach?
- depends on required precision
- consider relation between momentum and velocity
- define deviation from Newton's relation by:

$$
\beta /(\beta \gamma)=1-\varepsilon \text { with } 0<\varepsilon<1
$$

$\boldsymbol{\varepsilon}$	$\boldsymbol{\gamma}$	$\boldsymbol{\beta}$	\boldsymbol{E}
0.1	1.11111	0.436	$103 \mathrm{MeV} / \mathrm{u}$
0.01	1.01010	0.141	$9.4 \mathrm{MeV} / \mathrm{u}$
0.001	1.00100	0.045	$932 \mathrm{keV} / \mathrm{u}$
0.0001	1.00010	0.014	$93.2 \mathrm{keV} / \mathrm{u}$
0.00001	1.00001	0.004	$9.32 \mathrm{keV} / \mathrm{u}$

- below this β, deviation from linearity smaller than ε last line still corresponds to $1300 \mathrm{~km} / \mathrm{s}=1.3 \mathrm{~m} / \mathrm{s}$!

How Relativistic are GSI and FAIR?

- UNILAC ($\beta<0.15$) and CRYRING ($\beta<0.25$) close to non-relativistic
- SIS18 and SIS100 practically always relativistic
- SIS100 for protons at extraction pretty relativistic ($\mathrm{y} \approx 30$)
- For comparison: LHC @ $7 \mathrm{TeV} \rightarrow \mathrm{y} \approx 7500$ (now this is ultra-relativistic...)

Lorentz Force and Magnetic Rigidity

- Lorentz force on charged particles in electromagnetic fields

$$
\underline{\mathrm{F}}=\mathrm{Q} \cdot \mathrm{e}(\underline{E}+\underline{\mathrm{v}} \times \underline{\mathrm{B}})=\mathrm{M} \cdot \mathrm{dp} / \mathrm{dt}
$$

- general equation involving 3D vector quantities ($\underline{(}, \underline{E}, \underline{v}, \underline{B}, \underline{p}$)
- electric field \underline{E} will accelerate particle if aligned with \underline{v}
- force by magnetic field \underline{B} always perpendicular to $\underline{v}->$ no acceleration
- change of momentum per nucleon proportional to Q / M
- Particle in homogenous magnetic field B
- energy remains constant
- trajectory is circle with radius ρ satisfying: $B \cdot \rho=M / Q \cdot p$
- fundamental relation for accelerator physics
- quantity Bp denoted magnetic rigidity
- the larger $\mathrm{B} \rho$, the harder it is to deflect the particle by a magnetic field
- for fixed p rigidity determined by mass-to-charge ratio M/Q

Manetic Rigidity: Examples

Ions		SIS18 Inj.	SIS18 Ext.	SIS100 Ext.
		$\mathrm{E}=11.4 \mathrm{MeV} / \mathrm{u}$	$\mathrm{E}=1 \mathrm{GeV} / \mathrm{u}$	$\mathrm{E}=1.5 \mathrm{GeV} / \mathrm{u}$
Ion	M / Q	$\mathrm{Bp}[\mathrm{Tm}]$	$\mathrm{B} \boldsymbol{[T m}]$	$\mathrm{Bp}[\mathrm{Tm}]$
${ }^{40} \mathrm{Ar}^{18+}$	2.22	1.08	12.5	16.6
${ }^{40} \mathrm{Ar}^{10+}$	4.00	1.95	n.a.	30.0
${ }^{86} \mathrm{Kr}^{33+}$	2.61	1.27	14.7	19.5
${ }^{86} \mathrm{Kr}^{16+}$	5.38	2.62	n.a.	40.3
${ }^{238} \mathrm{U}^{73+}$	3.26	1.59	18.4	24.4
${ }^{238} \mathrm{U}^{28+}$	8.50	4.14	n.a.	63.7

Protons	SIS18 Inj. (UNILAC)	SIS18 Inj. (p-Linac)	SIS18 Ext.	SIS100 Ext.
	$\mathrm{E}=11.4 \mathrm{MeV} / \mathrm{u}$	$\mathrm{E}=70.0 \mathrm{MeV} / \mathrm{u}$	$\mathrm{E}=4 \mathrm{GeV} / \mathrm{u}$	$\mathrm{E}=29 \mathrm{GeV} / \mathrm{u}$
M/Q	$\mathrm{B} \mathrm{\rho}[\mathrm{Tm}]$	$\mathrm{B} \mathrm{\rho}[\mathrm{Tm}]$	$\mathrm{B} \mathrm{\rho}[\mathrm{Tm}]$	$\mathrm{B} \mathrm{\rho}[\mathrm{Tm}]$
1.007	0.49	1.26	16.3	100

Deflection in Dipoles

- Dipole with a uniform field deflects a charged particle by an angle θ
- θ depends on arc length L and magnetic field B
- L depends on θ and radius ρ

$$
L=\theta \cdot \rho
$$

- Particle with magnetic rigidity $\mathrm{B} \rho$

$$
B \cdot L=\theta \cdot B \rho
$$

- Quantity B•L is referred to as integral magnetic field
- Deflection angle given by

$$
\theta=B \cdot L / B \rho
$$

- Macroscopic angles to bend transfer lines or create circular accelerators \rightarrow bending magnets
- Microscopic angles to correct beam trajectory or closed orbit \rightarrow steering magnets

Dipoles as Separators

- Consider particles with fixed p but different M and Q in a dipole field B
- assume B•L same for all M, Q
- deflection angle given by

$$
\theta=\mathrm{Q} / \mathrm{M} \cdot \mathrm{~B} \cdot \mathrm{~L} / \mathrm{p}
$$

- Charge separation
- assume same M, but different Q
- let only one angle θ pass and vary B, then Q proportional to 1/B

Some separator magnets are rather large...

- Mass separation
- assume same Q, but different M
- let only one angle θ pass and vary B, then M proportional to B

...and one can build separators with more dipoles.

Example: Spectrometer

Charge separation behind gas stripper

Mass (isotope) separation

Dipole Magnets

- Homogeneous field desired
- At GSI and FAIR electromagnets with and iron core are used
- B field created in gap g between two parallel iron poles N and S
- B field excited by current in coil with N windings
- B field can be calculated

$$
B=\mu_{0} \cdot N \cdot I / g
$$

$$
\mu_{0}=4 \pi \cdot 10^{-7} \mathrm{Tm} / \mathrm{A} \text { (constant of nature) }
$$

- Choice of coils
- Normal conducting (water cooled)
- e.g. SIS18, ESR, FRS
- Super-conducting (liquid He cooled)
- e.g. SIS100, Super-FRS

C core dipole
e.g. ESR, CRYRING

H core dipole
e.g. SIS18, SIS100

Window frame dipole

Bending Magnets @ GSI and FAIR

Machine	Type	\mathbf{N}	$\boldsymbol{\theta}$ $[\mathrm{deg}]$	$\boldsymbol{\rho}$ $[\mathrm{m}]$	\mathbf{L} $[\mathrm{m}]$	$\mathbf{B}_{\text {max }}$ $[\mathrm{T}]$	$\mathbf{B L}_{\text {max }}$ $[\mathrm{Tm}]$	$\mathbf{B} \boldsymbol{\rho}_{\text {max }}$ $[\mathrm{Tm}]$
SIS18	H	24	15	10.4	2.7	1.8	4.9	18.7
ESR	C	6	60	6.25	6.5	1.6	10.5	10.0
CRYRING	C	12	30	1.20	0.63	1.2	0.75	1.44
SIS100	H	108	3.33	52.6	3.1	1.9	5.8	100.0
CR	H	24	15	8.13	2.1	1.6	3.4	13.0
HESR	H	44	8.18	29.4	4.2	1.7	7.1	50.0

And a large variety of bending magnets in the transfer lines and at the experiments...

Particle Motion in Dipole Magnets

- Can we build circular accelerators from dipoles only?
- Start two particles in same field
- same momentum, same position
- different angle
- Use particle A's trajectory as reference and measure deviation of B's trajectory along the circle
- particle B oscillates around particle A

- such oscillations characterize transverse motion in accelerators
- referred to as betatron oscillations
- more about that later... (see talk on 'Transverse Dynamics')

Stable or Unstable Motion

- In the previous example, horizontal trajectories close on themselves
- could be repeated infinitely
- motion considered to be stable
- focusing effect of the dipole field
- What about the vertical motion?
- particle A at zero position and angle
- particle B with same position but small angle at start
- the dipole field has no influence on the vertical motion of both particles
- position of particle B grows without bounds over many turns
- motion considered to be unstable
- Need focusing in the vertical direction

Quadrupole Magnets

- Quadrupole magnet has 4 poles symmetric about the center
- By symmetry the B field on the longitudinal axis is zero
- particle passes straight through the center with no deflection
- quadrupole magnet is straight
- B field depends linearly on position
- horizontal direction: $B_{y}=B^{\prime} \cdot x$
- vertical direction: $\quad B_{x}=-B^{\prime} \cdot y$
- B' referred to as field gradient
- Integral quadrupole strength

$$
k \cdot L=B^{\prime} \cdot L / B \rho
$$

- focusing power for particles with Bp
- analogous to angle of a dipole

Effect of Quadrupole Magnets

Focusing quadrupole (QF)

- Forces on particles determined by arrangement of poles
- arrangement $\mathrm{SNS}_{\mathrm{S}}^{\mathrm{N}}$
- focusing in horizontal plane
- defocusing in vertical plane
- denoted focusing quadrupole (QF)
- arrangement ${ }_{N}^{S N}$
- defocusing in horizontal plane
- focusing in vertical plane
- denoted defocusing quadrupole (QD)
- Forces linear in transverse position
- particles receive deflection proportional to their position
- similar to lenses in optics except that lenses (de)focus in both planes

Focusing with Quadrupole Magnets

- Neither QF nor QD can focus in both x and y simultaneously, but...
- Combinations of QF and QD with overall focusing in x and y possible
- Idea:
- put QD in place where horizontal offsets are small
- put QF in place where vertical offsets are small
- then effect of QD on x respectively QF on y should be small
- Different arrangements possible
- FODO: smallest field gradients
- Doublet: long free section
- Triplet: symmetric beams

Transverse Phase Space

- Consider again focusing by QF in the horizontal plane
- parallel input trajectories
\rightarrow particles characterized by position x
- at focal point, all particles have $x=0$
\rightarrow particles characterized by angle x^{\prime}
- In general, position x and angle x^{\prime} needed to fully describe particle
- aggregated into vector $\binom{\mathrm{x}}{\mathrm{x}^{\prime}}$
- can be depicted in 2D coordinate system called phase space
- convergent trajectories have negative x^{\prime} for positive x and vice versa
- opposite sign for divergent trajectories
- Vertical plane completely analoguos

Quadrupole Effect Quantitatively

- Consider thin quadrupole at $\mathrm{s}=0$
- Input vector (just in front of quad)

$$
\binom{x}{x^{\prime}}_{\text {in }}=\binom{x_{1}}{0}
$$

- Output vector (just behind quad)
$\binom{x}{x^{\prime}}_{\text {out }}=\binom{x_{1}}{-x_{1} / f}$
- same position x_{1} (thin quad)
- angle of trajectory: $-\mathrm{x}_{1} / \mathrm{f} \quad\left(\mathrm{x}_{1} \ll \mathrm{f}\right)$
- Vector downstream of quad at s

$$
\binom{x}{x^{\prime}}(s)=\binom{x}{x^{\prime}}_{\text {out }}+\binom{-x_{1} / f \cdot s}{0}
$$

- angle fixed in drift space
- position change linear in s

Matrix Formalism

- Matrices and vectors
- mathematical structures with a very powerful calculus (linear algebra)
- easily implemented in computer programs
- very convenient for representing particle transport through accelerators with linear forces
- takes some time getting used to it...

Multiplication rules for matrices and vectors

Matrix \cdot Vector $=$ Vector

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{x}{y}=\binom{a \cdot x+b \cdot y}{c \cdot x+d \cdot y}
$$

Matrix \cdot Matrix $=$ Matrix

$$
\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right) \cdot\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)=\left(\begin{array}{ll}
a_{1} a_{2}+b_{1} c_{2} & a_{1} b_{2}+b_{1} d_{2} \\
c_{1} a_{2}+d_{1} c_{2} & c_{1} b_{2}+d_{1} d_{2}
\end{array}\right)
$$

Multiplication not commutative...

$$
M_{1} \cdot M_{2} \neq M_{2} \cdot M_{1}
$$

..but associative

$$
\left(M_{1} \cdot M_{2}\right) \cdot M_{3}=M_{1} \cdot\left(M_{2} \cdot M_{3}\right)
$$

Quadrupoles and Drifts as Matrices

- Effect of thin quadrupole with focal length f described by matrix
$\binom{x_{2}}{x_{2}^{\prime}}=\left(\begin{array}{cc}1 & 0 \\ -1 / f & 1\end{array}\right) \cdot\binom{x_{1}}{x_{1}^{\prime}}=\binom{x_{1}}{x_{1}^{\prime}-x_{1} / f}$
- first row: position x is unchanged and does not depend on angle x '
- second row: quad changes angle x' by amount proportional to position x
- Effect of drift space of length L

$$
\binom{x_{2}}{x_{2}^{\prime}}=\left(\begin{array}{ll}
1 & \mathrm{~L} \\
0 & 1
\end{array}\right) \cdot\binom{\mathrm{x}_{1}}{\mathrm{x}^{\prime}{ }_{1}}=\binom{\mathrm{x}_{1}+\mathrm{L} \cdot \mathrm{x}_{1}{ }_{1}}{\mathrm{x}_{1}}
$$

- first row: position x changes by amount proportional to angle x^{\prime}
- second row: angle unchanged
- Can be visualized in phase space

FODO Focusing

- Alternating focusing and defocusing quadrupoles separated by drift spaces
- FODO cell can be repeated many times (periodic FODO channel)
- Dipole magnets installed between quadrupoles for curved accelerators
- approximately like drift spaces
- Efficient focusing structure regarding necessary fields for given aperture
- Periodic solution exists
- output beam same as input beam

Matrix formalism allows to split quads easily...

Matrix of FODO cell
$M=M_{Q F / 2} \cdot M_{D} \cdot M_{Q D} \cdot M_{D} \cdot M_{Q F / 2}$
$=\left(\begin{array}{cc}1-\frac{L^{2}}{2 t^{2}} & 2 L\left(1+\frac{L}{2 t}\right) \\ -\frac{L^{2}}{2 f^{2}}\left(1-\frac{L}{2 f}\right) & 1-\frac{L^{2}}{2 f^{2}}\end{array}\right)$
Just for the curious and brave...

FODO Tracking: Trajectories

- Particle tracks obtained by tracking random sample of particles
- General properties of FODO structure visible, but where are the limits?

FODO Tracking: Envelopes

- Shape of beam emerges when tracking lots of particles
- Envelope can actually be calculated from L and $f(\rightarrow$ talk on transverse optics)

FODO Focusing: Mechanical Analogue

- Ball rolling without friction in a gutter can't escape due to force of gravity
- Particles diverging from nominal orbit focused back by quadrupoles

FODO Tracking: Cross section

- Cross sections reflect the change of beam size through FODO cell
- In real accelerator observable using scintillating screens
- not possible for beam in a circular accelerator
- typically not inside of quadrupoles, of course...

FODO Tracking: Phase Space

- Important property of beam, but not directly observable in a real accelerator
- how would you measure the angle of a trajectory simultaneously with position?

FODO Tracking: Beam Profiles

Horizontal beam profiles

Vertical beam profiles

- Projections of phase space onto position can be observed
- beam profiles measured by SEM-grids, MWPCs, BIFs, IPMs
- very important information for set-up of accelerators and beamlines

FODO Tracking: Mismatch

- Important property of beam, but not directly observable in a real accelerator
- how would you measure the angle of a trajectory simultaneously with position?

Emittance

- Oscillation amplitude of single particles normally conserved
- remember the frictionless gutter: ball will oscillate forever
- measure of transverse energy
- Transverse energy referred to as single particle emittance
- transverse energy created by random motion in the source
- conserved (at best) until final target
- measure of disorder of particles in the beam
- impossible to create truly parallel beam (would be completely ordered)

Beam Size and Emittance

- Periodic solution of FODO cell characterized by ellipses
- aspect ratio defined by quadrupoles
- for upright ellipses, aspect ratio described by beta functions $\beta_{x / y}$
- area of ellipse written as

$$
A_{x / y}=\pi \cdot \varepsilon_{x / y}
$$

- emittance $\varepsilon_{x / y}$ measure for beam size

$$
r_{x / y}=\sqrt{\varepsilon_{x / y} \cdot \beta_{x / y}}
$$

- Emittance is constant in FODO cell
- small width implies large angle spread
- limits the beam spot size at a target

- impossible to create parallel beam

Skew ellipses \rightarrow talk on Transverse Optics

Emittance Change

- Sources of emittance growth
- scattering in stripping foil or targets
- ellipse mismatch
- non-linear fields
- Ways to shrink emittance
- acceleration shrinks emittance according to $\varepsilon \sim 1 / p \sim 1 / B p$ (adiabatic damping)
- electron cooling (SIS, ESR) and stochastic cooling (ESR) available to create very small emittances
- Unnecessary emittance growth can limit performance
- beam losses due to beam size growth
- larger beam spot size at targets

Emittance and Acceptance

- Emittance:
area of phase space ellipse containing a fraction of particles (e.g. 95\%)
- may grow due to mismatch, non-linear fields, beam interaction with pipe, etc.
- does not take into account deviations of beam center from ideal orbit
- Acceptance: maximum area of the ellipse possible without ever losing particles (by hitting beam pipe)

- acceptance in general smaller than physical aperture of beam pipe
- need some margin for deviations of beam center and emittance growth

Non-Linear Magnets: Sextupoles

- Magnet with six poles
- Field depends quadratic on position
- forces on particles non-linear
- in general no analytic solutions
- can even lead to chaotic motion
- Frequently used in accelerators
- correction of momentum dependent effects on betatron oscillations (e.g. SIS18, ESR, FRS)
- essential for slow extraction (SIS18)
- compensation of unavoidable field errors in main magnets (dipoles)

Particle motion during slow extraction (SIS18)

Non-Linear Magnets: Octupoles

- Octupoles for SHIP beamline
- deformation of ellipse by non-linear field of octupoles
- uniform distribution in cross section
- higher beam intensity at equal maximum particle density on target

Summary

- Definition of elements and isotopes
- Special relativity and electro-dynamics
- masses, energies and mass-energy relation
- Relativistic particle motion and non-relativistic limit
- Lorentz force and magnetic rigidity
- Motion of charged particles in magnetic fields
- dipoles as bending magnets and separators
- quadrupoles as focusing magnets
- non-linear magnets for more sophisticated purposes
- Particle tracking and transverse phase space
- vectors for description of particles and matrix formalism
- FODO focusing structure
- emittance and acceptance

Thank you for your attention!

These slides contain material I found in talks of the following colleagues: W. Bayer and M. Maier (GSI), R. Steerenberg (CERN), K. Peach (Oxford University) I'm very grateful for the possibility of profiting from their excellent material.

