Introduction to Accelerator Physics

D. Ondreka, GSI Operator Training 2016

Outline

- Introduction
- Particles and units
- Relativity
- Charged particles in fields
- Magnets
- Charged particle dynamics
- Emittance and acceptance

Experimenters wishes

- What are these fancy symbols here about: p, Au, N, Ni?
- What do these funny numbers mean: 3.6MeV/u, 300-1000MeV/u, 1e8/spill?
- What do our accelerators have to do with all this?

Elements and Isotopes

Elements

- atomic building blocks of matter
- characterized by atomic number Z
 - number of protons in nucleus and electrons in neutral atom
 - one-to-one correspondence to chemical symbol X

Isotopes

- variants of the same element with different number N of neutrons
- identified by mass number A = Z + N
- same electron configuration, hence same chemical properties
- only few isotopes stable

Notation

	Z	Α	N	Abundance
⁴⁰ Ca	20	40	20	96.9%
⁴⁸ Ca	20	48	28	0.2%

neutron-rich nucleus, often used for SHE experiments

Elements

(Source: http://www.pctheory.uni-ulm.de/didactics/quantenchemie/html/PSE-F.html)

Ordering of elements according to atomic number Z and electron configuration

Isotopes

Source: http://moriond.in2p3.fr/radio/moriond-huyse.ppt

Ordering of elements according to proton number Z and neutron number N

lons

- Acceleration requires charged particles (we'll come to that...)
- lons
 - created by removing electrons from atoms (or molecules)
 - characterized by their charge state Q
 - notation for ions of atoms (i.e. isotopes)

	Z	Q	#electrons
⁴⁸ Ca	20	0	20
⁴⁸ Ca ¹⁰⁺	20	10	10

- notation for molecules similar
 - examples: H₂+, H₃+, CH₃+
- creation of ions from neutral particles in ion sources
- increasing of charge state by stripping in gas or foils

Ion Masses

- Acceleration of ions depends on mass of ion
 - Need to know the masses of ions
- SI units impractical:

-
$$m_p \approx m_n \approx 1.7 \cdot 10^{-27} \text{ kg}$$

- Atomic mass units (AMU)
 - definition of atomic mass unit:

$$m(^{12}C) = 12u = A \cdot u$$

	SI units	AMU	ME
u	1.661·10 ⁻²⁷ kg	1u	0
m_p	1.672·10 ⁻²⁷ kg	1.007u	0.007
m_n	1.675·10 ⁻²⁷ kg	1.009u	0.009
m(¹² C)	1.993·10 ⁻²⁶ kg	12 u	0
m(⁴⁸ Ca)	7.965·10 ⁻²⁶ kg	47.953u	-0.047
m _e	9.109·10 ⁻³¹ kg	5.5·10 ⁻⁴ u	n.d.

– for general isotopes we define a mass number M:

$$m(^{A}X) = M \cdot u \approx A \cdot u$$

- small difference between A and M:
 - mass excess ME: M = A + ME ME/M < 0,1% (except e.g. p, d) but this is the origin of nuclear power...
 - missing electrons for ions: $m(^{A}X^{Q}) = (M Q \cdot A_{e}) \cdot u$ $z \cdot A_{e} / M < 0.05\%$
 - significant for high precision exp. (e.g. mass measurements in storage rings)

Ion Energies

- Experimentalists require ions with a certain kinetic energy
 - usually specified as kinetic energy per atomic mass unit
 - example: ²³⁸U⁷³⁺, E=1GeV/u, N_{ions}=10⁹ particles
 - what's this mysterious 'GeV'?
 - elementary charge: $e = 1.602 \cdot 10^{-19}C$ charge of proton and electron (up to sign)
 - when pushed by a voltage of 1V, a particle with charge e gains energy 1eV
 - in SI units: $1eV = 1.602 \cdot 10^{-19} J$
 - prefixes for saving digits: 1000eV=1keV, 1000keV=1MeV, 1000MeV=1GeV
 - what's the kinetic energy of the beam in the example?
 - A = 238, ME = 0.05u, Q = 73 \rightarrow M = 238.01, m = M·u
 - $E_{ion} = M \cdot u \cdot E = 238.01 GeV$
 - $E_{beam} = N_{ions} \cdot E_{ion} = 10^9 \cdot 238.01 \text{ GeV} = 238.01 \cdot 10^{18} \text{ eV} \approx 40 \text{ J}$
 - kinetic energy of a walking man: $E = 1/2 \cdot m \cdot v^2 = 1/2 \cdot 80 \text{kg} \cdot 1 (\text{m/s})^2 = 40 \text{J}$
 - if deposited in 1ml of water: heating by 10 degrees, dose 40000Gy

Relativity: Mass and Energy

Mass and energy are equivalent

$$E = mc^2$$

- What's the energy of a mass unit?
 - speed of light (constant of nature):

- energy of 1u:
 - $u \cdot c^2 \approx 1.661 \cdot 10^{-27} \text{kg} \cdot (2.998 \cdot 10^8 \text{m/s})^2 \approx 1.4925 \cdot 10^{-8} \text{J}$
 - 1eV $\approx 1.602 \cdot 10^{-19} \text{J}$
 - $u \cdot c^2 \approx 931.6 \cdot 10^6 eV$
 - precise value: $u \cdot c^2 = 931.494 \text{ MeV}$
- Expression of masses as energies in convenient units
 - consider $^{238}U^{73+}$: m·c² = M·u·c² = 238.01·u·c² = 221.7GeV
 - also written as: $m = 221.7 GeV/c^2$

Relativity: Energy

- Energy equivalent to mass is referred to as rest energy
 - will use symbol E_0 from now on: $E_0 = mc^2 = M \cdot uc^2$
 - use special symbol E_u for amu: $E_u = uc^2$
- Kinetic energy of ion always proportional to mass
 - write kinetic energy as: E_{ion} = M⋅E
 - E is referred to as kinetic energy per nucleon (or per atomic mass unit)
- Total energy is the sum of rest and kinetic energy
 - again proportional to mass: $M \cdot E_{tot} = M \cdot (E + E_u)$
- Comparison of total energy to rest energy
 - defines the **relativistic gamma**: $\gamma = E_{tot}/E_u = 1 + E/E_u$
 - examples:
 - injection into SIS18: E = 11.4MeV/u → γ = 1 + 11.4/931.5 = 1.01
 - extraction from SIS18: E = $1 \text{GeV/u} \rightarrow \gamma = 1 + 1000/931.5 = 2.07$

Relativity: Velocity

- Velocity expressed in units of the speed of light
 - defines **relativistic beta**: $v = \beta \cdot c$
- Gamma and beta are related
 - Lorentz factor: $\gamma = 1/\sqrt{(1 \beta^2)}$
 - can be inverted: $\beta = \sqrt{(1 1/\gamma^2)}$
- Velocity bound by speed of light
 - Look again at $\gamma = 1 + E/E_u$
 - E=0 \rightarrow y = 1 \rightarrow β = 0
 - E -> ∞ \rightarrow γ -> ∞ \rightarrow β -> 1
 - range of beta: $0 \le \beta < 1$
 - lons never reach the speed of light
 - but they can come quite close:
 (e.g. p@LHC: E=7TeV, γ≈7500, 1-β≈10-8)

Relativity: Momentum

- Momentum is an important kinematical quantity
 - conserved if no forces act on the particle
 - deflection in a magnet is proportional to momentum (we'll come to that...)
- Related to the other relativistic parameters
 - proportional to mass: p_{ion} = M⋅p
 - non-linear relation to velocity: $pc = \gamma \cdot \beta \cdot E_u = \beta/\sqrt{(1 \beta^2) \cdot E_u}$
 - non-linear relation to energy: $pc = \sqrt{(E \cdot (E + 2 \cdot E_u))}$
 - example: E = 1GeV → pc = 1692GeV or p = 1692GeV/c here we've omitted the /u for convenience...

Relativity: Non-Relativistic Limit

- Newton's physics recovered for small energies
 - Newton's relations for momentum:

$$p = u \cdot v$$

$$p = V(2 \cdot u \cdot E)$$

- check of velocity relation:
 - let $\beta \rightarrow 0 \rightarrow pc = \beta/\sqrt{(1 \beta^2)} \cdot E_u \rightarrow \beta \cdot E_u = c \cdot u \cdot \beta c = c \cdot u \cdot v$
- check of energy relation:

• let E -> 0
$$\rightarrow$$
 pc = $\sqrt{(E \cdot (E + 2 \cdot E_u))}$ -> $\sqrt{(2 \cdot E_u \cdot E)}$ = $c\sqrt{(2 \cdot u \cdot E)}$

- How far does Newton's arm reach?
 - depends on required precision
 - consider relation between momentum and velocity
 - define deviation from Newton's relation by:

$$\beta/(\beta\gamma) = 1 - \epsilon$$
 with $0 < \epsilon < 1$

below this β, deviation from linearity smaller than ε

ε	γ	β	E
0.1	1.11111	0.436	103MeV/u
0.01	1.01010	0.141	9.4MeV/u
0.001	1.00100	0.045	932keV/u
0.0001	1.00010	0.014	93.2keV/u
0.00001	1.00001	0.004	9.32keV/u

last line still corresponds to 1300km/s = 1.3m/μs!

How Relativistic are GSI and FAIR?

- UNILAC (β < 0.15) and CRYRING (β < 0.25) close to non-relativistic
- SIS18 and SIS100 practically always relativistic
- SIS100 for protons at extraction pretty relativistic (γ ≈ 30)
- For comparison: LHC @ 7 TeV → γ ≈ 7500 (now this is ultra-relativistic...)

Lorentz Force and Magnetic Rigidity

Lorentz force on charged particles in electromagnetic fields

$$\underline{F} = Q \cdot e \left(\underline{E} + \underline{v} \times \underline{B} \right) = M \cdot d\underline{p}/dt$$

- general equation involving 3D vector quantities (<u>F</u>, <u>E</u>, <u>v</u>, <u>B</u>, <u>p</u>)
- electric field <u>E</u> will accelerate particle if aligned with <u>v</u>
- force by magnetic field <u>B</u> always perpendicular to \underline{v} -> no acceleration
- change of momentum per nucleon proportional to Q/M
- Particle in homogenous magnetic field B
 - energy remains constant
 - trajectory is circle with radius ρ satisfying: $B \cdot \rho = M/Q \cdot p$
 - fundamental relation for accelerator physics
 - quantity Bp denoted magnetic rigidity
 - the larger Bρ, the harder it is to deflect the particle by a magnetic field
 - for fixed p rigidity determined by mass-to-charge ratio M/Q

Manetic Rigidity: Examples

lons		SIS18 Inj.	SIS18 Ext.	SIS100 Ext.
		E=11.4MeV/u	E=1GeV/u	E=1.5GeV/u
lon	M/Q	Bρ [Tm]	Bρ [Tm]	Βρ [Tm]
⁴⁰ Ar ¹⁸⁺	2.22	1.08	12.5	16.6
⁴⁰ Ar ¹⁰⁺	4.00	1.95	n.a.	30.0
⁸⁶ Kr ³³⁺	2.61	1.27	14.7	19.5
⁸⁶ Kr ¹⁶⁺	5.38	2.62	n.a.	40.3
²³⁸ U ⁷³⁺	3.26	1.59	18.4	24.4
²³⁸ U ²⁸⁺	8.50	4.14	n.a.	63.7

Protons	SIS18 Inj. (UNILAC)	SIS18 Inj. (p-Linac)	SIS18 Ext.	SIS100 Ext.	
	E=11.4MeV/u	E=70.0MeV/u	E=4GeV/u	E=29GeV/u	
M/Q	Bρ [Tm]	Bρ [Tm]	Bρ [Tm]	Bρ [Tm]	
1.007	0.49	1.26	16.3	100	

Deflection in Dipoles

- Dipole with a uniform field deflects a charged particle by an angle θ
- θ depends on arc length L and magnetic field B
- L depends on θ and radius ρ

$$L = \theta \cdot \rho$$

Particle with magnetic rigidity Bp

$$B \cdot L = \theta \cdot B\rho$$

- Quantity B-L is referred to as integral magnetic field
- Deflection angle given by

$$\theta = B \cdot L/B\rho$$

- Macroscopic angles to bend transfer lines or create circular accelerators
 - bending magnets
- Microscopic angles to correct beam trajectory or closed orbit
 - → steering magnets

Dipoles as Separators

- Consider particles with fixed p but different M and Q in a dipole field B
 - assume B·L same for all M, Q
 - deflection angle given by

$$\theta = Q/M \cdot B \cdot L/p$$

- Charge separation
 - assume same M, but different Q
 - let only one angle θ pass and vary B, then Q proportional to 1/B
- Mass separation
 - assume same Q, but different M
 - let only one angle θ pass and vary B, then M proportional to B

Some separator magnets are rather large...

...and one can build separators with more dipoles.

Example: Spectrometer

Charge separation behind gas stripper

Mass (isotope) separation

Dipole Magnets

- Homogeneous field desired
- At GSI and FAIR electromagnets with and iron core are used
- B field created in gap g between two parallel iron poles N and S
- B field excited by current in coil with N windings
- B field can be calculated

$$B = \mu_0 \cdot N \cdot I/g$$

 $\mu_0 = 4\pi \cdot 10^{-7}$ Tm/A (constant of nature)

- Choice of coils
 - Normal conducting (water cooled)
 - e.g. SIS18, ESR, FRS
 - Super-conducting (liquid He cooled)
 - · e.g. SIS100, Super-FRS

C core dipole e.g. ESR, CRYRING

H core dipole e.g. SIS18, SIS100

Window frame dipole

Bending Magnets @ GSI and FAIR

Machine	Type	N	θ [deg]	ρ [m]	L [m]	B _{max} [T]	BL _{max} [Tm]	Βρ _{max} [Tm]
SIS18	Н	24	15	10.4	2.7	1.8	4.9	18.7
ESR	С	6	60	6.25	6.5	1.6	10.5	10.0
CRYRING	С	12	30	1.20	0.63	1.2	0.75	1.44
SIS100	Н	108	3.33	52.6	3.1	1.9	5.8	100.0
CR	Н	24	15	8.13	2.1	1.6	3.4	13.0
HESR	Н	44	8.18	29.4	4.2	1.7	7.1	50.0

And a large variety of bending magnets in the transfer lines and at the experiments...

Particle Motion in Dipole Magnets

- Can we build circular accelerators from dipoles only?
- Start two particles in same field
 - same momentum, same position
 - different angle
- Use particle A's trajectory as reference and measure deviation of B's trajectory along the circle
 - particle B oscillates around particle A
 - such oscillations characterize transverse motion in accelerators
 - referred to as betatron oscillations
 - more about that later...
 (see talk on 'Transverse Dynamics')

Stable or Unstable Motion

- In the previous example, horizontal trajectories close on themselves
 - could be repeated infinitely
 - motion considered to be stable
 - focusing effect of the dipole field
- What about the vertical motion?
 - particle A at zero position and angle
 - particle B with same position but small angle at start
 - the dipole field has no influence on the vertical motion of both particles
 - position of particle B grows without bounds over many turns
 - motion considered to be unstable
- Need focusing in the vertical direction

Vertical relative motion

Quadrupole Magnets

- Quadrupole magnet has 4 poles symmetric about the center
- By symmetry the B field on the longitudinal axis is zero
 - particle passes straight through the center with no deflection
 - quadrupole magnet is straight
- B field depends linearly on position
 - horizontal direction: B_y = B'⋅x
 - vertical direction: $B_x = -B' \cdot y$
 - B' referred to as field gradient
- Integral quadrupole strength

$$k \cdot L = B' \cdot L/B\rho$$

- focusing power for particles with Bp
- analogous to angle of a dipole

Effect of Quadrupole Magnets

- Forces on particles determined by arrangement of poles
 - arrangement ^{N S}_{S N}
 - focusing in horizontal plane
 - · defocusing in vertical plane
 - denoted focusing quadrupole (QF)
 - arrangement ^{S N}_{N S}
 - · defocusing in horizontal plane
 - focusing in vertical plane
 - denoted defocusing quadrupole (QD)
- Forces linear in transverse position
 - particles receive deflection proportional to their position
 - similar to lenses in optics except that lenses (de)focus in both planes

Focusing quadrupole (QF) Force on particles N S N QF QF

Focusing with Quadrupole Magnets

- Neither QF nor QD can focus in both x and y simultaneously, but...
- Combinations of QF and QD with overall focusing in x and y possible
- Idea:
 - put QD in place where horizontal offsets are small
 - put QF in place where vertical offsets are small
 - then effect of QD on x respectively QF on y should be small
- Different arrangements possible
 - FODO: smallest field gradients
 - Doublet: long free section
 - Triplet: symmetric beams

Transverse Phase Space

- Consider again focusing by QF in the horizontal plane
 - parallel input trajectories
 → particles characterized by position x
 - at focal point, all particles have x = 0
 ⇒ particles characterized by angle x'
- In general, position x and angle x' needed to fully describe particle
 - aggregated into vector (x)
 - can be depicted in 2D coordinate system called phase space
 - convergent trajectories have negative x' for positive x and vice versa
 - opposite sign for divergent trajectories
- Vertical plane completely analoguos

Quadrupole Effect Quantitatively

- Consider thin quadrupole at s = 0
- Input vector (just in front of quad)

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{in} = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}$$

Output vector (just behind quad)

$$\begin{pmatrix} \mathbf{x} \\ \mathbf{x}' \end{pmatrix}_{\text{out}} = \begin{pmatrix} \mathbf{x}_1 \\ -\mathbf{x}_1/\mathbf{f} \end{pmatrix}$$

- same position x₁ (thin quad)
- angle of trajectory: $-x_1/f$ ($x_1 << f$)
- Vector downstream of quad at s

- angle fixed in drift space
- position change linear in s

Matrix Formalism

Matrices and vectors

- mathematical structures with a very powerful calculus (linear algebra)
- easily implemented in computer programs
- very convenient for representing particle transport through accelerators with linear forces
- takes some time getting used to it...

Multiplication rules for matrices and vectors

Matrix · Vector = Vector

 $Matrix \cdot Matrix = Matrix$

$$\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \cdot \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 + b_1 c_2 & a_1 b_2 + b_1 d_2 \\ c_1 a_2 + d_1 c_2 & c_1 b_2 + d_1 d_2 \end{pmatrix}$$

Multiplication not commutative...

$$M_1 \cdot M_2 \neq M_2 \cdot M_1$$

..but associative

$$\left(\mathsf{M}_{1}\cdot\mathsf{M}_{2}\right)\cdot\mathsf{M}_{3}=\mathsf{M}_{1}\cdot\left(\mathsf{M}_{2}\cdot\mathsf{M}_{3}\right)$$

Quadrupoles and Drifts as Matrices

Effect of thin quadrupole with focal length f described by matrix

$$\begin{pmatrix} x_2 \\ x'_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x'_1 \end{pmatrix} = \begin{pmatrix} x_1 \\ x'_1 - x_1/f \end{pmatrix}$$

- first row: position x is unchanged and does not depend on angle x'
- second row: quad changes angle x' by amount proportional to position x
- Effect of drift space of length L

$$\begin{pmatrix} \mathbf{x}_2 \\ \mathbf{x'}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{L} \\ \mathbf{0} & \mathbf{1} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x'}_1 \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1 + \mathbf{L} \cdot \mathbf{x'}_1 \\ \mathbf{x'}_1 \end{pmatrix}$$

- first row: position x changes by amount proportional to angle x'
- second row: angle unchanged
- Can be visualized in phase space

FODO Focusing

- Alternating focusing and defocusing quadrupoles separated by drift spaces
- FODO cell can be repeated many times (periodic FODO channel)
- Dipole magnets installed between quadrupoles for curved accelerators
 - approximately like drift spaces
- Efficient focusing structure regarding necessary fields for given aperture
- Periodic solution exists
 - output beam same as input beam
 - ellipses in phase space
 - other beam shapes may lead to troubles (mismatch)

Matrix formalism allows to split quads easily...

Matrix of FODO cell

$$\begin{split} M &= M_{QF/2} \cdot M_D \cdot M_{QD} \cdot M_D \cdot M_{QF/2} \\ &= \begin{pmatrix} 1 - \frac{L^2}{2f^2} & 2L \Big(1 + \frac{L}{2f}\Big) \\ - \frac{L^2}{2f^2} \Big(1 - \frac{L}{2f}\Big) & 1 - \frac{L^2}{2f^2} \end{pmatrix} \end{split}$$

Just for the curious and brave...

FODO Tracking: Trajectories

- Particle tracks obtained by tracking random sample of particles
- General properties of FODO structure visible, but where are the limits?

FODO Tracking: Envelopes

- Shape of beam emerges when tracking lots of particles
- Envelope can actually be calculated from L and f (\rightarrow talk on transverse optics)

FODO Focusing: Mechanical Analogue

- Ball rolling without friction in a gutter can't escape due to force of gravity
- Particles diverging from nominal orbit focused back by quadrupoles

FODO Tracking: Cross section

Beam cross sections in x-y

- Cross sections reflect the change of beam size through FODO cell
- In real accelerator observable using scintillating screens
 - not possible for beam in a circular accelerator
 - typically not inside of quadrupoles, of course...

FODO Tracking: Phase Space

- Important property of beam, but not directly observable in a real accelerator
 - how would you measure the angle of a trajectory simultaneously with position?

FODO Tracking: Beam Profiles

- Projections of phase space onto position can be observed
 - beam profiles measured by SEM-grids, MWPCs, BIFs, IPMs
 - very important information for set-up of accelerators and beamlines

FODO Tracking: Mismatch

- Important property of beam, but not directly observable in a real accelerator
 - how would you measure the angle of a trajectory simultaneously with position?

Emittance

- Oscillation amplitude of single particles normally conserved
 - remember the frictionless gutter:
 ball will oscillate forever
 - measure of transverse energy
- Transverse energy referred to as single particle emittance
 - transverse energy created by random motion in the source
 - conserved (at best) until final target
 - measure of disorder of particles in the beam
 - impossible to create truly parallel beam (would be completely ordered)

Beam Size and Emittance

- Periodic solution of FODO cell characterized by ellipses
 - aspect ratio defined by quadrupoles
 - for upright ellipses, aspect ratio described by beta functions β_{x/y}
 - area of ellipse written as

$$A_{_{x/y}}=\pi\cdot\epsilon_{_{x/y}}$$

- emittance $\epsilon_{x/y}$ measure for beam size

$$r_{_{x/y}} = \sqrt{\epsilon_{_{x/y}} \cdot \beta_{_{x/y}}}$$

- Emittance is constant in FODO cell
 - small width implies large angle spread
 - limits the beam spot size at a target
 - impossible to create parallel beam

Skew ellipses \rightarrow talk on Transverse Optics

Emittance Change

- Sources of emittance growth
 - scattering in stripping foil or targets
 - ellipse mismatch
 - non-linear fields
- Ways to shrink emittance
 - acceleration shrinks emittance according to ε ~ 1/p ~ 1/Bρ (adiabatic damping)
 - electron cooling (SIS, ESR) and stochastic cooling (ESR) available to create very small emittances
- Unnecessary emittance growth can limit performance
 - beam losses due to beam size growth
 - larger beam spot size at targets

Emittance and Acceptance

- Emittance: area of phase space ellipse containing a fraction of particles (e.g. 95%)
 - may grow due to mismatch, non-linear fields, beam interaction with pipe, etc.
 - does not take into account deviations of beam center from ideal orbit
- Acceptance: maximum area of the ellipse possible without ever losing particles (by hitting beam pipe)
 - acceptance in general smaller than physical aperture of beam pipe
 - need some margin for deviations of beam center and emittance growth

Non-Linear Magnets: Sextupoles

- Magnet with six poles
- Field depends quadratic on position
 - forces on particles non-linear
 - in general no analytic solutions
 - can even lead to chaotic motion
- Frequently used in accelerators
 - correction of momentum dependent effects on betatron oscillations (e.g. SIS18, ESR, FRS)
 - essential for slow extraction (SIS18)
 - compensation of unavoidable field errors in main magnets (dipoles)

Particle motion during slow extraction (SIS18)

Non-Linear Magnets: Octupoles

Octupoles for SHIP beamline

- deformation of ellipse by non-linear field of octupoles
- uniform distribution in cross section
- higher beam intensity at equal maximum particle density on target

Summary

- Definition of elements and isotopes
- Special relativity and electro-dynamics
 - masses, energies and mass-energy relation
 - Relativistic particle motion and non-relativistic limit
 - Lorentz force and magnetic rigidity
- Motion of charged particles in magnetic fields
 - dipoles as bending magnets and separators
 - quadrupoles as focusing magnets
 - non-linear magnets for more sophisticated purposes
- Particle tracking and transverse phase space
 - vectors for description of particles and matrix formalism
 - FODO focusing structure
 - emittance and acceptance

Thank you for your attention!

These slides contain material I found in talks of the following colleagues: W. Bayer and M. Maier (GSI), R. Steerenberg (CERN), K. Peach (Oxford University)

I'm very grateful for the possibility of profiting from their excellent material.