

Analysis of IBHS files

Mariusz Sapinski, LOAO

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Operateursschulung 2016

Table of contents

Introduction

- Accelerator Data
- IBHS files

2 pyGADA framework

- Description
- Structure
- Script example

3 Some results

- 238U-UL-SU-TKU beam
- Other beams

4 Conclusions

Appendix

Introduction

- Analysis of the accelerator data = better understanding of the machine.
- ② CERN central logging projects: LEP from 1992 (3 years after commissioning) → LHC (from 2004).
- **③** In 2013 CERN stored **online** 50 TB for about 1 million signals.
- Diamond Light Source, UK: 100,000 Signalen.
- § for instance power converter currents are logged every 1 s 10 mins.
- 6 Here we only talk about IBHS files analysis.
- Original idea from Wolfgang Kaufmann: 'why some IBHS files are better than others'.
- There is not (yet) answer to this question.

IBHS files

- Contain information about: beam type, magnet strength, RF amplitude and phase and beam current, total about 570 lines.
- Saved manually by you, the Operators.

1		HS-	197AU-140419-:	2025-UR-SU	UZ6.DA	Г - /home/sapir	ski/PHYS/bbe/pyGADA/t
<u>F</u> ile <u>E</u>	dit <u>S</u> earc	h <u>P</u> references	Shell Macro	∐indows			
[! Komment	tar: Strah	l auf Diamant d	hne Folie				A4 3.6 MeV/u
Betrieb	osMode: Be:	am.					A4 3.6 MeV∕u
! Abschwä	ichung: Ab:	schwächung durc	h GUH2QQ14				A4 3.6 MeV/u
Gerät	Prop.	SaveWert	Strom v. IMax N	JormKons U_	197AU	140419-2025	A4 3.6 MeV/u
!GUR3QQO1	L VOLTS	2.349		0.00000	197AU 8	140419-2025	66547 A4 3.6 MeV/u
#GUR3QQ01	L FIELDS	0.12748E+01	0.00000*IMax	0.00000 UR	197AU 8	140419-2025	66547 A4 3.6 MeV/u
!GUR3QQO2	2 VOLTS	3.269		0.00000	197AU 8	140419-2025	66547 A4 3.6 MeV/u
#GUR3QQO2	2 FIELDS	-0.17735E+01	0.00000*IMax	0.00000 UR	197AU 8	140419-2025	66547 A4 3.6 MeV/u
1GUR30003	3 VOLTS	4.091		0.00000	197AU 8	140419-2025	66547 A4 3.6 MeV/u
#GUR30003	3 FIELDS	0.22171E+01	0.00000*IMax	0.00000 UR	197AU 8	140419-2025	66547 A4 3.6 MeV/u
1GUR3QQ04	1 VOLTS	3.074		0.00000	197AU 8	140419-2025	66547 A4 3.6 MeV/u
#GUR30004	I FIELDS	-0.16679E+01	0.00000*IMax	0.00000 UR	197AU 8	140419-2025	66547 A4 3.6 MeV/u
IGUR40T11	VOLTS	1.370		0.00000	197AU 8	140419-2025	66547 A4 3.6 MeV/u
#GUR4QT11	FIELDS	0.21667E+01	0.00000*IMax	0.00000 UR	197AU 8	140419-2025	66547 A4 3.6 MeV/u
GUR4QT12	2 VOLTS	2.348		0.00000	197AU 8	140419-2025	66547 A4 3.6 MeV/u
#GUR4QT12	2 FIELDS	-0.36979E+01	0.00000*IMax	0.00000 UR	197AU 8	140419-2025	66547 A4 3.6 MeV/u
GUR4QT1	3 VOLTS	0.897		0.00000	197AU 8	140419-2025	66547 A4 3.6 MeV/u
#GUR4QT13	3 FIELDS	U.14241E+U1	0.00000*IMax	0.00000 UR	197AU 8	140419-2025	66547 A4 3.6 MeV/u
GUR4MS1F	4 VOLTS	0.029		0.00000	197AU 8	140419-2025	66547 A4 3.6 MeV/u
#GUR4MS1F	I FIELDS	0.95931E-04	0.00000*IMax	0.00000 UR	197AU 8	140419-2025	66547 A4 3.6 MeV/u
IGUR4MSIN	A AOPLES	-1.524	0.00000.000	0.00000	197AU 8	140419-2025	6654/ A4 3.6 MeV/u
#GUR4MSIN	A FIELDS	-0.50414E-02	0.00000*IMax	0.00000 UK	19/AU 8	140419-2025	6654/ A4 3.6 MeV/u
I GUR4DTS	[mA]	0.04025					66548 A4 0 6 M M /
I GURSMS2F	4 VOLTS	0.005	0.00000+78	0.00000	197AU 8	140419-2025	66547 A4 3.6 MeV/u
#GURSMS2F	1 FIELDS	0.16540E-04	0.00000*IMax	0.00000 UK	197AU 8	140419-2025	66547 A4 3.6 MeV/U
I GURSMS2V	VOLTS	1.765	0.00000+78	0.00000	197AU 8	140419-2025	66547 A4 3.6 MeV/U
#GURSMS21	I HOLDE	0.30366E-02	0.00000*IM9X	0.00000 UK	107AU 0	140419-2025	CCE47 34 3.6 MeV/U
#OURSQD21	VOLTS	0.054705.01	0.00000+78	0.00000 770	107AU 0	140419-2025	CCE47 34 3.6 MeV/U
LetteEon22	U TILLUS	0.20479E+01 1 001	0.00000*IMaX	0.00000 UK	107att 0	140419-2025	66547 34 3.6 MeV/U
sz Sapins	ki, LOAO		Analys	is of IBHS	files		February 4,

16 4 / 27

27

IBHS files statistics

- There is about 260 types of files (virtual accelerators) from Dec 2000 till Nov 2015.
- Total number of files: about 3700.

1	238UUL-SU-TKU	227	2008-02-14 21:26:00	2014-10-27 17:43:00	
2	238UUL-SU-TKG	201	2008-02-21 19:53:00	2014-11-04 17:45:00	
3	_50TI-UR-SU-UX8	201	2011-04-18 14:04:00	2012-06-18 00:52:00	
4	197AU-UR-SU-UX0	158	2008-04-25 21:32:00	2015-09-23 16:28:00	
5	197AU-UR-SU-UM3	144	2009-02-16 20:50:00	2015-09-18 12:52:00	
6	_40AR-UL-SU-UY7	143	2008-12-09 16:19:00	2010-01-31 18:43:00	
7	197AU-UR-SU-UM1	89	2010-02-14 13:55:00	2015-09-24 06:14:00	
8	_40AR-UL-SU-US3	89	2004-04-27 17:10:00	2011-07-14 04:44:00	
9	_48CA-UN-UN-UX8	74	2014-09-29 13:37:00	2015-10-08 15:07:00	
10	_48CA-UN-UN-UY7	71	2014-09-29 11:10:00	2015-10-08 14:51:00	
11	6D3-UL-SU-TKG	69	2014-06-23 17:31:00	2014-06-30 08:20:00	Save IBHS files
12	_28N2-UL-SU-TIST	cal ana	Iysis4signitica	2014-09-16 08:27:00	regularly to
13	_28N2-UL-SU-TKG	bm abb	201430134112300	2014-10-13 22:16:00	
14	_40AR-UL-SU-TKU	52	2008-02-01 20:04:00	2011-05-30 05:58:00	Increase
15	238UUL-SU-US3	50	2002-08-06 10:52:00	2014-11-04 18:52:00	statistics
16	_40AR-UR-SU-UY7	46	2007-06-27 09:01:00	2015-07-25 00:13:00	Statistics.
17	_40AR-UN-UN-UCW	45	2012-09-10 14:47:00	2015-08-06 07:06:00	
18	197AU-UL-SU-TKU	44	2012-04-03 23:51:00	2012-05-07 13:58:00	
19	_40AR-UR-SU-UX8	43	2006-11-02 13:31:00	2015-07-15 09:26:00	
20	_86KR-UL-SU-TKU	40	2010-03-24 12:31:00	2014-04-02 15:02:00	
N	Apriusz Spojnski 1040		Analysis of IBHS fil	95	Eebruary 4, 2016 5

Most interesting beams

Files of the most interest to analyze before 2016 run - maybe we can learn something for this year already? (Daniel Severin suggestions).

- 238U UL SU TKU $E_{beam} = 11.4 \text{ MeV/u}$ (2014), 46 files
- $238U UL SU TKG \dots$
- $197AU UR SU UX0 \dots$
- $197AU UR SU UM3 \dots$
- 197AU UR SU UM1
- 48CA UN UN UX8 ...
- 48CA UN UN UY7
- 238U UL SU UM3
- 12C UN UN TKU
- 15CH UL SU UM3

python GSI Accelerator Data Analysis

pyGADA - a python-based framework for general data analysis

- For the moment contains module for IBHS files (inspired by Peter Gerhard's script) and BIF profiles analysis.
- It is in bbe svn repository feel free to use it.
- Maybe someone wants to develop it with me?

Future developments (some ideas):

- Include more data: more on trafos, SIS IPM, tune.
- More advanced numerical methods, eg. categorization algorithms.
- Need YOUR knowledge on the machine!

Structure

Current structure

GSI

Script example

```
\# ana_example1.py
import sys
sys.path.append("Modules/") # path to analysis modules
from BeamRun import * # main class
# declare the beam run (IBHS name patter and dates):
b=BeamRun("data/UNILAC/IBHS/HS-238U_-+*UL-SU-TKU.DAT","2014-1-1", dateti
b.addBeamlineSegment ("GUL_2015", "GUH_2015", "GUS_2015",
"GUA_2015", "GUE_2015", "GUT_2015")
# IBHS data reading :
b.readIBHS()
# test integrity of IBHS files wrt Beamline Segments:
b.integrityIBHS_MAG()
\# selection: keep only main magnets (QS, QD, QT and QQ)
b.ibhs.retainMainMagnets() # optional
# can be:
#b.ibhs.retainSteeringMagnets()
#b.ibhs.retainMagnets(["GUS4QT53","GUA4QT11"])
```


238U-UL-SU-TKU beam - settings variation

Plot voltage setting for a particular magnet, historical and distribution: b.ibhs.plotVoltHist("GUS4QT53")

Script example

238U-UL-SU-TKU beam - settings variation

Plot voltage setting for a particular magnet, historical and distribution:

b.ibhs.plotVoltHist("GUS4QT53",start_date=datetime(2014,9,1)) b.ibhs.plotVoltDist("GUS4QT53")

Voltage

238U-UL-SU-TKU beam - settings variation

$b.ibhs.plotVoltStdDist(stdThr{=}1.0)$

Magnet	σ
GUA4QD12	2.2
GUA4QD11	2.0
GUS4QT51	1.9
GUS4QT53	2.3
GUA1QS1Z	1.9
GUA2QS3Z	1.8
GUA2QS4Z	1.7

238U-UL-SU-TKU beam - correlation between magnets

b.ibhs.plotMagnetsCorr("GUA4QD12","GUS4QT53")
another, more pronounced correlation:
b.ibhs.plotMagnetsCorr("GUA4QD12","GUA4QD11",fit=True)

238U-UL-SU-TKU beam - beam current

Trafos are saved in IBHS files for a single shot. That is not representative for setting quality. In the future **better data** are required. Beam current: b.ibhs.plotBcurLoss()

Use two trafos to define global transmission: GUL4DT4 and GUA1DT1:

b.ibhs.defineTrss("GUL4DT4","GUA1DT1")

Mariusz Sapinski, LOAO

238U-UL-SU-TKU beam - trafo data quality

b.ibhs.plotBcurDist("GUL4DT4") b.ibhs.plotBcurDist("GUA1DT1")

Large spread of data. GUA1DT1: often very small values, single shot transmission data are not very good. Downstream trafos are worse.

238U-UL-SU-TKU beam - correlations

Correlations between magnet settings and transmission.

b.ibhs.plotVoltTrssCorrDist(corrThr=0.3)

Why peak at r=-0.04?

Magnet	r
GUH2QQ14	0.377
GUH4MS6V	0.313
GUA4QD11	-0.411
GUA4QD12	-0.450
GTK5MO1	0.350

Correlations for single elements are weak. Not surprising - this is why **operators work is challenging!**

Principal Component Analysis

PCA is a linear transformation which converts set of possibly correlated variables to uncorrelated ones.

PCA1=A*GUA4QD11+B*GUA4QD12 -describes trend in data.

found recently: C. Bloomer, G. Rehm, Using Principal Component Analysis to Find Correlations and Patterns at Diamond Light Source, IPAC2014, THPME188 (again: some GBbytes of data analysed!)

238U-UL-SU-TKU beam - PCA

select magnets with high variation of settings:

b.ibhs.retainVaryingMagnets(1.)						
b.ibhs.makeMAGrunTsData()						
b.ibhs.runRootPCA()	Magnet	1st comp. contribution				
	GUH2QQ14	0.015				
	GUS4QT51	0.081				
	GUS4QT53	-0.085				
	GUA1QS1Z	0.169				
	GUA1QS2Z	0.242				
keeping 13	GUA2QS3Z	0.174				
out of 115	GUA2QS4Z	0.192				
magnets.	GUA2QS5Z	0.227				
ind griete.	GUA3QS6Z	0.220				
	GUA3QS7Z	0.228				
	GUA4QS9Z	0.238				
	GUA4QD11	0.131				
	GUA4QD12	0.123				

238U-UL-SU-TKU beam - PCA

Correlation of 1st PCA to transmission

b.ibhs.plot1PCADist()

No correlation... ;-(but let's look at other beams!

Mariusz Sapinski, LOAO

48Ca-UN-UN-UX8 beam - PCA

Correlation of 1st PCA to transmission

```
b.ibhs.retainVaryingMagnets(1.0)
b.ibhs.plot1PCADist(fitline=True)
b.ibhs.plot1PCADist(pcarange=(-3.,-0.5),fitline=True) # zoom
```


Strong correlation! Based on PCA from 13 magnets. Potentially a suggestion of settings can be done!

Mariusz Sapinski, LOAO

197Au-UR-SU-UM3 at 4.7 MeV/u - PCA

Correlation of 1st PCA to transmission b.ibhs.plot1PCADist()

Potential algorithm: $V_{mag1} = a_1 * x$ $V_{mag2} = a_2 * x$ $V_{mag3} = a_3 * x$... and optimal x: $x = x_1...x_2$

Summary and conclusions

- Analysis of machine data improves target-time, setup-time and transmission.
- Let's collect and analyze a significant amount of data in 2016: BIF, trafos, SIS tune spectrum, IPM, orbit etc.
- (for FAIR a special data archiving system is planned, but will not be ready in 2016)
- Try to setup some beams in 2016 following results of IBHS files analysis.
- There is a lot of work with this analysis ahead, maybe someone would like to help? Technologies: basic linux and python.

Special thanks to: Wolfgang, Stephan, Petra, Peter.

Thank you for your attention!

238U-UL-SU-TKU beam - transmission evolution

b.ibhs.plotTrssHist(end_date=datetime(2014,5,1)) b.ibhs.plotTrssHist(start_date=datetime(2014,10,1))

Appendix 1: results 238U UL SU TKG

- xx files from Feb 2008 till October 27th, 2014.
- energy 11.4 MeVn energy analysis!
- used only 2014 data (62 files).

b.ibhs.plotVoltStdDist(printThreshold=2.0)

Magnet	σ
GUS4QT53	2.1
GUA1QS01	2.1
GUA1QS05	2.1
GUA1QS09	2.0
GUA1QS13	2.0
GUA1QS1Z	2.2
GUA2QS3Z	2.1
GUA4QD12	2.7
GTK5QD41	2.3
GTK5QT51	2.2
GTK5QT52	2.1

February 4, 2016

25 / 27

Appendix

Appendix 1: results 238U UL SU TKG

History and correlations.

Appendix

Appendix 1: results 238U UL SU TKG

