

Charm09, May 20-22, 2009, Leimen, Germany



- Introduction
- Recent light hadron spectroscopy results (selected topics)
- Study of light hadron spectroscopy @ BES3
- Summary

#### **New forms of hadrons**

Hadrons consist of 2 or 3 quarks:

**Naive Quark Model:** 



- New forms of hadrons:
  - Multi-quark states : Number of quarks >= 4
  - Hybrids : qq<del>g</del>, qqqg ...
  - Glueballs : gg, ggg ...

Multi-quark states, glueballs and hybrids have been searched for experimentally for a very long time, but none is established.

However, during the past years, a lot of surprising experimental evidences showed the existence of hadrons that cannot (easily) be explained in the conventional quark model.

# Meson spectroscopy

- The low mass 0<sup>++</sup> states have been confusing for many years. There are so many 0<sup>++</sup>s', such as f<sub>0</sub>(1370), f<sub>0</sub>(1500), f<sub>0</sub>(1710) ....
- Two ground-state isoscalar  $1^{++}$  states at 1240 and 1480 MeV in the quark model. But there are 3  $1^{++}$ states in this region --  $f_1(1285)$ ,  $f_1(1420)$ ,  $f_1(1530)$ .
- whether 0<sup>++</sup> f<sub>0</sub>(980) and a<sub>0</sub>(980) are molecular states or not.
- extra 2<sup>++</sup> states

## Baryon spectroscopy

- The understanding of the internal quark-gluon structure of baryons is one of the most important tasks in both particle and nuclear physics.
- The systematic study of various baryon spectroscopy will provide us with critical insights into the nature of QCD in the confinement domain.
- The available experimental information is still poor, especially for the excited baryon states with two strange quarks, e.g., ±\*. Some phenomenological QCD-inspired models predict more than 30 such kinds of baryons, however only few are experimentally well settled.
  - Totally only about 10% excited baryons are observed.

#### Study of light hadron spectroscopy

- Search for glueballs, hybrids and multiquark states
- Systematic study of the light meson spectroscopy
- Study of the excited baryon states

Y(2175)

- BaBar
- BES2
- BELLE

# Observation of a new 1<sup>--</sup> resonance Y(2175) at BaBar

• A structure at 2175MeV was observed in  $e^+e^- \rightarrow \gamma_{ISR} \phi f_0(980)$ ,  $e^+e^- \rightarrow \gamma_{ISR} K^+K^-f_0(980)$ initial state radiation processes  $M = 2175 \pm 10 \pm 15 \text{ MeV}$  $\Gamma = 58 \pm 16 \pm 20 \text{ MeV}$ 

Phys. Rev. D 74 (2006) 091103(R) Phys. Rev. D 76 (2007) 012008



# **BESII:** Y(2175) in $J/\psi \rightarrow \eta \phi f_0(980)$

**Final states:** 

 $\eta \rightarrow \gamma \gamma, \phi \rightarrow K^+ K^-, f_0(980) \rightarrow \pi^+ \pi^-$ 



Define  $\eta$ ,  $\phi$ ,  $f_0(980)$  signal and sideband regions.

Phys. Rev. Lett., 100, 102003 (2008)



#### A peak around 2175 MeV/c<sup>2</sup> is observed in $J/\psi \rightarrow \eta \phi f_0(980)$



B(J/ψ → ηY(2175)B(Y(2175) → φf<sub>0</sub>(980))B(f<sub>0</sub>(980) → π<sup>+</sup>π<sup>-</sup>) = (3.23±0.75(*stat*)±0.73(*syst*))×10<sup>-4</sup>

#### **BELLE:** $e^+e^- \rightarrow \gamma_{ISR} \phi \pi^+\pi^-$

673 fb<sup>-1</sup>





Belle: I. Adachi et al., arXiv:0808.0006

Fit results:

 $M(\Phi(1680)) = 1687 \pm 21 MeV/c^2$ 

 $\Gamma(\Phi(1680)) = 212 \pm 29 \text{ MeV/c}^2$ 

$$\begin{split} \mathsf{M}(\mathsf{Y}(2175)) &= 2133^{+69}_{-115} \quad \mathsf{MeV/c^2} \\ \mathsf{F}(\mathsf{Y}(2175)) &= 169^{+105}_{-92} \quad \mathsf{MeV/c^2} \end{split}$$



# What is Y(2175)?

Some theoretical interpretations:

- A conventional  $S\overline{S}$  state?
- An  $S\overline{S}$  analog of Y(4260) (  $S\overline{S}g$  )?
- An  $s\overline{s}s\overline{s}$  4-quark state?

### More experimental information needed.

To understand the nature of Y(2175), we are now working on  $J/\psi \rightarrow \eta K^*\overline{K^*}$ ,  $\eta \Lambda \overline{\Lambda}$ ,  $\eta K\overline{K}$ , ...

# BESII: Y(2175) in $J/\psi \rightarrow \eta K^{*0} K^{*0}$ ?



K<sup>\*0</sup> K<sup>\*0</sup> invariant mass in J/ψ→ηK<sup>\*0</sup> K<sup>\*0</sup>







- BES2
- BELLE

#### **BESII:** Observation of $\omega\phi$ threshold enhancement in $J/\psi \rightarrow \gamma \omega\phi$



PRL 96 (2006) 162002

$$M = 1812_{-26}^{+19} \pm 18 \text{ MeV/c}^2$$
  

$$\Gamma = 105 \pm 20 \pm 28 \text{ MeV/c}^2$$

 $Br(J/\psi \to \gamma X) \cdot Br(X \to \omega \phi) =$ (2.61±0.27±0.65)×10<sup>-4</sup>

X(1812) favors 0<sup>++</sup> over 0<sup>-+</sup> and 2<sup>++</sup>

Same 0<sup>++</sup> observed in  $\gamma$ KK or  $\phi \pi \pi$  (f<sub>0</sub>(1710), or f<sub>0</sub>(1790)), or is it a glueball, hybrid, tetraquark state, threshold cusp ....?

Further look in  $\omega\omega$ , K\*K\*,  $\phi\phi$  .... is desirable !

#### **BELLE:** Search for X(1812) in $B^{\pm} \rightarrow K^{\pm} \omega \phi$



#### **BELLE:** Search for X(1812) in $B^{\pm} \rightarrow K^{\pm} \omega \phi$



- $\mathcal{B}(B^\pm \ \rightarrow \ K^\pm \omega \phi) \ < \ 1.9 \times 10^{-6}$
- No significant signal is observed in  $\omega\phi$  mass spectrum.  $B(B \rightarrow K^{\pm}X(1812)) \cdot B(X(1812) \rightarrow \omega\phi) < 3.2 \times 10^{-7} (90\% \text{ C.L.})$

# Study of the light scalars

- $\blacksquare$  There have been hot debates on the existence of  $\sigma$  and  $\kappa$  .
- σ, κ, f<sub>0</sub>(980) and a<sub>0</sub>(980) are possible mutiquark states. They are all near threshold.
- Lattice QCD predicts the 0<sup>++</sup> scalar glueball mass ~ 1.6 GeV. f<sub>0</sub>(1500) and f<sub>0</sub>(1710) are good candidates.

(KLOE and BESII experiments)

#### **KLOE:** Scalars in $\phi$ decays

$$e^{+}e^{-} \rightarrow \phi \rightarrow (f_{0}^{+} \sigma)\gamma \rightarrow \pi^{0}\pi^{0}\gamma, \pi^{+}\pi^{-}\gamma$$
Talk by B. D. Micco  
at Phi to Psi 2008
$$e^{+}e^{-} \rightarrow \phi \rightarrow a_{0}^{-}\gamma \rightarrow \eta\pi^{0}\gamma$$
Nucl. Phys. B (Proc. Suppl.) 186 (2009) 290
$$e^{+}e^{-} \rightarrow \phi \rightarrow (a_{0}^{-} + f_{0}^{-})\gamma \rightarrow K^{0}\overline{K^{0}}\gamma \rightarrow K_{s}K_{s}\gamma$$



• Dalitz plot fit to  $\gamma \pi^0 \pi^0$  gives the parameters of  $f_0$ 



•  $\sigma$  is needed in the fit.

#### **KLOE:** Scalars in $\phi$ decays



Nucl. Phys. B (Proc. Suppl.) 186 (2009) 290



Dalitz plot fit.

#### **KLOE:** Scalars in $\phi$ decays

 $e+e- \rightarrow \phi \rightarrow a_0 \gamma \rightarrow \eta \pi^0 \gamma$ 

Nucl. Phys. B (Proc. Suppl.) 186 (2009) 290



## **BESII:** f<sub>0</sub>(980)



Important parameters from PWA fit:

$$M = 965 \pm 8 \pm 6 MeV$$
$$g_{\pi\pi} = 165 \pm 10 \pm 15 MeV$$
$$(\frac{g_{KK}}{g_{\pi\pi}})^2 = 4.21 \pm 0.25 \pm 0.21$$

 Large coupling with KK indicates big SS component in f<sub>0</sub>(980)

Phys. Lett. B 607 (2005) 243

| (g <sub>f0K+K-</sub> /g                                  | Theoretical predictions |                         |                     |     |
|----------------------------------------------------------|-------------------------|-------------------------|---------------------|-----|
| Exps.                                                    | 4q                      | $f_0 = s s$             | f <sub>o</sub> =n n |     |
|                                                          |                         |                         |                     |     |
| KLOE (2009)                                              | 4.8±1.4                 | >>1                     | >>1                 | 1/4 |
| CMD-2 (1999)                                             | 3.61±0.62               |                         |                     |     |
| SND (2000)                                               | <b>4.6±0.8</b>          |                         |                     |     |
| BESII (2005)                                             | 4.21±0.33               |                         |                     |     |
|                                                          |                         |                         |                     |     |
| (g <sub>f0K+K-</sub> /g <sub>a0K+K-</sub> ) <sup>2</sup> |                         | Theoretical predictions |                     |     |
| KLOE 3.4±0.8                                             |                         | 1                       | 2                   | 1   |

#### **BESII:** $f_0(1500)$ and $f_0(1710)$



# **J**/ $\psi$ → $\gamma$ ππ **PWA results**

Lower 0<sup>++</sup> : 0<sup>++</sup> is strongly preferred over 2<sup>++</sup>

 $f_0(1500): \begin{array}{l} M = (1466 \pm 6 \pm 16) \text{ MeV} \\ \Gamma = (108^{+14}_{-11} \pm 21) \text{ MeV} \end{array}$ 

- f<sub>0</sub>(1370) cannot be excluded
- Higher 0<sup>++</sup>: f<sub>0</sub>(1710) or f<sub>0</sub>(1790) or both?

 $M = (1765_{-3}^{+4} \pm 11) \text{ MeV}$  $\Gamma = (145 \pm 8 \pm 23) \text{ MeV}$ 



# About $f_0(1500)$ and $f_0(1710)$

- It is first clearly observed in  $J/\psi$  radiative decays.
- Its production rate in  $J/\psi$  radiative decays:

 $BR(J/\psi \rightarrow \gamma f_0(1500)) \bullet BR(f_0(1500) \rightarrow \pi\pi) \sim 1 \times 10^{-4}$  (BESII)

$$BR \ (f_0 \ (1500 \ ) \to \pi\pi \ ) \sim 35 \ \% \ (PDG \ )$$



$$BR(J/\psi \to \gamma f_0(1500)) \sim 3 \times 10^{-4}$$

The production rate of f<sub>0</sub>(1500) in J/ψ radiative decays is lower than that of f<sub>0</sub>(1710):

$$BR(J/\psi \to \gamma f_0(1500)) \sim 3 \times 10^{-4}$$

$$BR(J/\psi \to \gamma f_0(1710)) > 9 \times 10^{-4}$$
$$(PDG)$$

It may indicate: f<sub>0</sub>(1710) has stronger coupling to gluons than f<sub>0</sub>(1500) → which one contains more glueball content?

### **BESII:** observation of N(2050)



# **BESII:** PWA of $J/\psi \rightarrow p\overline{p}\pi^0$



#### Resonances used in the PWA

| Resonance  | Mass(MeV) | Width(MeV) | $J^P$             | C.L.            |
|------------|-----------|------------|-------------------|-----------------|
| • N(940)   | 940       | 0          | $\frac{1}{2}^+$   | off-shell       |
| • N(1440)  | 1440      | 350        | $\frac{1}{2}^+$   | ****            |
| • N(1520)  | 1520      | 125        | $\frac{3}{2}^{-}$ | ****            |
| • N(1535)  | 1535      | 150        | $\frac{1}{2}^{-}$ | ****            |
| • N(1650)  | 1650      | 150        | $\frac{1}{2}^{-}$ | ****            |
| • N(1675)  | 1675      | 145        | $\frac{5}{2}$     | ****            |
| • N(1680)  | 1680      | 130        | $\frac{5}{2}^{+}$ | ****            |
| N(1700)    | 1700      | 100        | $\frac{3}{2}^{-}$ | ***             |
| • N(1710)  | 1710      | 100        | $\frac{1}{2}^+$   | ***             |
| N(1720)    | 1720      | 150        | $\frac{3}{2}^+$   | ****            |
| Nx(1885)   | 1885      | 160        | $\frac{3}{2}^{-}$ | 'Missing' $N^*$ |
| N(1900)    | 1900      | 498        | $\frac{3}{2}^+$   | **              |
| N(2000)    | 2000      | 300        | $\frac{5}{2}^+$   | **              |
| • Nx(2065) | 2065      | 150        | $\frac{3^+}{2}$   | 'Missing' $N^*$ |
| • N(2080)  | 2080      | 270        | $\frac{3}{2}^{-}$ | **              |
| N(2090)    | 2090      | 300        | $\frac{1}{2}$     | *               |
| • N(2100)  | 2100      | 260        | $\frac{1}{2}^+$   | *               |

# **Comparison of data with fit results**



#### N(1440), N(1520), N(1535), N(1650), N(1675), N(1680), N(1710) are needed.

Nx(2065) exists in this channel (stat. sig. >>5σ)
 The spin-parity favors 3/2+

 $M = 2040_{-4}^{+3} \pm 25 \text{ MeV}, \ \Gamma = 230 \pm 8 \pm 52 \text{ MeV}$ 

| N*      | M(MeV/c²)               | Г <b>(MeV/c²)</b>       | JP   | fraction(%) | Br ( <b>×10</b> ⁻⁴) |
|---------|-------------------------|-------------------------|------|-------------|---------------------|
| N(1440) | $1455^{+2}_{-7}\pm43$   | $316^{+5}_{-6} \pm 67$  | 1/2+ | 9.74~25.93  | 1.33~3.54           |
| N(1520) | $1513^{+3}_{-4}\pm13$   | $127^{+7}_{-8} \pm 37$  | 3/2- | 2.38~10.92  | 0.34~1.54           |
| N(1535) | $1537^{+2}_{-6} \pm 12$ | $135^{+8}_{-8} \pm 39$  | 1/2- | 6.83~15.58  | 0.92~2.10           |
| N(1650) | $1650^{+3}_{-6} \pm 26$ | $145^{+5}_{-10} \pm 31$ | 1/2- | 6.89~27.94  | 0.91~3.71           |
| N(1710) | $1715^{+2}_{-2}\pm29$   | $95^{+2}_{-1} \pm 44$   | 1/2+ | 4.17~30.10  | 0.54~3.86           |
| N(2065) | $2040^{+3}_{-4} \pm 25$ | $230^{+8}_{-8} \pm 52$  | 3/2+ | 23.0~41.8   | 0.91~3.11           |

# Study of the light hadron spectroscopy from $\chi_{cJ}$ decays

- The decays of  $\chi_{cJ}$  (esp.  $\chi_{c0}$  and  $\chi_{c2}$ ), provide a direct window on glueball dynamics in 0<sup>++</sup> and 2<sup>++</sup> channels, as the  $\chi_{cJ}$  hadronic decays may proceed via  $c\overline{c} \rightarrow g g \rightarrow (q \overline{q})(q \overline{q})$
- Amplitude analysis of χ<sub>cJ</sub> decay is an excellent tool to investigate the intermediate resonant decay modes



#### **BESII:** PWA of $\chi_{c0} \rightarrow \pi^+\pi^-K^+K^-$

PRD 72, 092002 (2005)

|                                                          | $N^{obs}$       | $\epsilon~(\%)$ | Sys. error (%)              | ${\cal B}(\chi_{c0} 	o X 	o \pi^+\pi^-K^+K^-)$ | 5.5.        |
|----------------------------------------------------------|-----------------|-----------------|-----------------------------|------------------------------------------------|-------------|
|                                                          |                 |                 |                             | $(\times 10^{-4})$                             |             |
| $f_0(980)f_0(980)$                                       | $27.9\pm6.7$    | $6.25\pm0.01$   | $\substack{+55.7\\-45.3}$   | $3.46 \pm 0.83 ^{+1.93}_{-1.57}$               | $5.3\sigma$ |
| $f_0(980)f_0(2200)$                                      | $77.1\pm10.6$   | $7.09\pm0.01$   | $\substack{+19.6\\-27.2}$   | $8.42 \pm 1.16^{+1.65}_{-2.29}$                | $7.1\sigma$ |
| $f_0(1370)f_0(1710)$                                     | $60.6 \pm 12.4$ | $6.59\pm0.01$   | $\substack{+46.1 \\ -23.6}$ | $7.12 \pm 1.46 \substack{+3.28 \\ -1.68}$      | $6.5\sigma$ |
| $K^*(892)^0ar{K}^*(892)^0$                               | $64.5\pm9.9$    | $6.18\pm0.01$   | $\substack{+28.3\\-24.6}$   | $8.09 \pm 1.24^{+2.29}_{-1.99}$                | $7.1\sigma$ |
| $K_0^*(1430)ar{K}_0^*(1430)$                             | $82.9 \pm 12.5$ | $6.15\pm0.01$   | $\substack{+29.2\\-18.2}$   | $10.44 \pm 1.57^{+3.05}_{-1.90}$               | $7.2\sigma$ |
| $K_0^*(1430)\bar{K}_2^*(1430) + c.c.$                    | $62.0\pm10.7$   | $5.66\pm0.01$   | $\substack{+15.6\\-23.4}$   | $8.49 \pm 1.47^{+1.32}_{-1.99}$                | $8.7\sigma$ |
| $K_1(1270)^{\pm}K^{\mp} \rightarrow K^{\pm}\rho K^{\mp}$ | $68.3 \pm 11.0$ | $5.68 \pm 0.01$ | $\substack{+19.4\\-17.6}$   | $9.32 \pm 1.50 ^{+1.81}_{-1.64}$               | $8.6\sigma$ |
| $K_1(1400)^{\pm}K^{\mp} \to K^{*0}\pi^{\pm}K^{\mp}$      | $19.7\pm6.9$    | $4.94\pm0.01$   | $^{+219}_{-24.5}$           | < 11.9 (90% C.L.)                              | $2.7\sigma$ |

 $\chi_{cJ}$  decays provide good place for the study of the light mesons.

#### CLEO (3M $\psi$ '): Dalitz plot analyses of $\chi_{c1} \rightarrow \pi^0 K^+ K^-, \eta \pi^+ \pi^- \text{ and } \pi^+ K^- K_s^0$



PRD 72, 032002 (2007)

PRD 72, 032002 (2007)

 $\chi_{c1} \rightarrow \pi^0 K^+ K^-$ 

 $\chi_{c1} \rightarrow \pi^+ K^- K_s^0$ 



Combined fit to these two modes to take the advantage of the isospin symmetry.

#### Study of the light hadron spectroscopy from charm meson decays

- Dalitz plot analysis of charm meson decays can be served as a platform for the study of the light hadron spectroscopy.
- e+ e- collisions accumulated at  $\sqrt{s}$  = 3.77, 4.17 GeV,... provide clean charm meson samples.
- **E791 at FNAL, B decays, ...**

#### **E791 : PWA analysis of** $D^+ \rightarrow K^- \pi^+ \pi^+$



0.5

0.75

2.5

2.25

Smaller M<sup>2</sup>(K<sup>\*</sup>π<sup>+</sup>) (GeV/c<sup>2</sup>)<sup>2</sup>

2.75

 no significant difference with isobar model

#### **CLEO** : Dalitz plot analysis of $D^+ \rightarrow K^- \pi^+ \pi^+$



#### Comparison of the results between E791 and CLEO

.

| Parameter $(MeV/c^2)$  | E791 [PDG 2000]     | CL                       | EO-c                     | PDG 2006 [1]        |
|------------------------|---------------------|--------------------------|--------------------------|---------------------|
|                        | Model C             | (if float)               | Model I2 (if float)      |                     |
| m <sub>K*(892)</sub>   | 896.1[±0.27]        | 896(894.8 ± 0.5)         | $895.7 \pm 0.2 \pm 0.3$  | $896.00\pm0.25$     |
| $\Gamma_{K^{*}(892)}$  | 50.7[±0.6]          | $50.3(45.5 \pm 0.4)$     | $45.3 \pm 0.5 \pm 0.6$   | $50.3 \pm 0.6$      |
| m <sub>K*(1430)</sub>  | $1459\pm7\pm12$     | $1463.0 \pm 0.7 \pm 2.4$ | $1466.6 \pm 0.7 \pm 3.4$ | $1414 \pm 6$        |
| $\Gamma_{K^{*}(1430)}$ | $175\pm12\pm12$     | $163.8 \pm 2.7 \pm 3.1$  | $174.2 \pm 1.9 \pm 3.2$  | $290 \pm 21$        |
| $m_{K^{*}(1430)}$      | 1432.4[±1.3]        | $1432.4(1436 \pm 11)$    | $1432.4(1427 \pm 7)$     | $1432.4 \pm 1.3$    |
| $\Gamma_{K^*(1430)}$   | 109[±5]             | $109(132 \pm 21)$        | $109(120 \pm 13)$        | $109 \pm 5$         |
| $m_{K^*(1680)}$        | 1717[±27]           | $1717(1782 \pm 41)$      | $1717(1679 \pm 59)$      | $1717 \pm 27$       |
| $\Gamma_{K^*(1680)}$   | $322[\pm 110]$      | $322(565 \pm 131)$       | $322(446 \pm 119)$       | $322 \pm 110$       |
| m <sub>K*(1410)</sub>  | $1414[\pm 15]$      | 1414                     | 1414                     | $1414 \pm 15$       |
| $\Gamma_{K^*(1410)}$   | 232[±21]            | 232                      | 232                      | $232 \pm 21$        |
| m <sub>K</sub>         | $797 \pm 19 \pm 43$ | $809 \pm 1 \pm 13$       | Complex pole,            | $K_0^*(800)$ is not |
| Γκ                     | $410\pm43\pm87$     | $470\pm9\pm15$           | see Table VI             | established         |

#### **CLEO** : Dalitz plot analysis of $Ds^+ \rightarrow K^+K^-\pi^+$

586 pb<sup>-1</sup> data at  $\sqrt{s}$  =4.17 GeV  $\rightarrow$  0.57 M Ds Ds\* pairs

#### arXiv: 0903. 1301



#### **CLEO** : Dalitz plot analysis of $Ds^+ \rightarrow K^+K^-\pi^+$

#### arXiv: 0903. 1301

| Resonance     | Parameter $(MeV/c^2)$ | Central Fit     | Floated              | PDG [8]              |
|---------------|-----------------------|-----------------|----------------------|----------------------|
| $K^{*}(892)$  | m                     | $895.8 \pm 0.5$ | $895.8 \pm 0.5$      | $896.00 \pm 0.25$    |
|               | Г                     | $44.2 \pm 1.0$  | $44.2 \pm 1.0$       | $50.3 \pm 0.6$       |
| $K_0^*(1430)$ | m                     | 1414            | $1422 \pm 23$        | $1414 \pm 6$         |
|               | Г                     | 290             | $239 \pm 48$         | $290 \pm 21$         |
| $f_0(980)$    | m                     | 965             | $933 \pm 21$         | $980 \pm 10$         |
|               | $g_{\pi\pi}$          | 406             | $393 \pm 36$         | $\Gamma$ =40 to 100  |
|               | $g_{KK}$              | 800             | $557 \pm 88$         |                      |
| $\phi(1020)$  | m                     | 1019.460        | $1019.64 {\pm} 0.05$ | $1019.460{\pm}0.019$ |
|               | Г                     | 4.26            | $4.780 \pm 0.14$     | $4.26 \pm 0.05$      |
| $f_0(1370)$   | m                     | 1350            | $1315 \pm 34$        | 1200  to  1500       |
|               | Г                     | 265             | $276 \pm 39$         | 200 to 500           |
| $f_0(1710)$   | m                     | 1718            | $1749 \pm 12$        | $1718 \pm 6$         |
|               | Γ                     | 137             | $175 \pm 29$         | $137 \pm 8$          |

# Prospects of light hadron spectroscopy at BESIII

#### Beijing Electron Positron Collider (BEPC) at IHEP

BESI: 1989-1998 BESII: 1999-2004 L ~  $5 \times 10^{30}$  /cm<sup>2</sup>·s at J/ $\psi$ E<sub>beam</sub>~ 1 - 2.5 GeV



#### **BESIII: 2008-**

Physics run started in March, 2009. 100M  $\psi$ (25) collected

BEPCII: L reached  $3 \times 10^{32}$ /cm<sup>2</sup>·s at  $\psi(3770)_{47}$ designed L:  $10^{33}$ /cm<sup>2</sup>·s



|        | BESIII                                   | BESII                                             |
|--------|------------------------------------------|---------------------------------------------------|
| MDC    | $\sigma_{p_t}/p_t=0.32\% p_t, dE/dx<6\%$ | $\sigma_p/p = 1.78\% \sqrt{1 + p^2}, dE/dx = 8\%$ |
| TOF    | 90 ps (for bhabha)                       | 180 ps (for bhabha)                               |
| EMC    | $\sigma_E/E = 2.3\%/\sqrt{E}$            | $\sigma_E/E = 22\%/\sqrt{E}$                      |
| MUC    | 9 for barrel, 8 for end-cap              | 3 layers for barrel                               |
| Magnet | 1.0 T                                    | 0.4 T                                             |

# **BESIII/BEPCII** running

#### BEPCII

- = J/ $\psi$  production cross section ~ 2500-3000 nb  $\psi$ (25) production cross section ~ 600 nb
  - Average J/ $\psi$  events rate ~ 150-200 Hz Average  $\psi$ (2S) events rate ~ 70 Hz
  - Running time: ~ 50000 s/day (86400 s/day)

Number of J/ $\psi$  events: ~ 7.5 -10 M /day

• Number of  $\psi(2S)$  events: ~ 3.5 M /day

BESII J/ $\psi$ : 58 M BESII  $\psi$ (2S): 14 M, BESIII: 100M CLEO-c  $\psi$ (2S): 28 M

# Observation of an anomalous enhancement near the threshold of $p\overline{p}$ mass spectrum at BES II



#### **BESII:** X(1835) in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$



 $B(J/\psi \to \gamma X)B(X \to \pi^+\pi^-\eta') = (2.2 \pm 0.4 \pm 0.4) \times 10^{-4}$ 

PRL 95 (2005) 262001



 $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-, \eta' \rightarrow \eta \pi^+ \pi^-, \eta \rightarrow \gamma \gamma$ 







#### The Y(2175) in $J/\psi \rightarrow \eta \phi f_0(980)$ at BESIII

BOSS 6.3.4

**BESII data** ~ 58M J/ $\psi$ 







| Mass(GeV) |              | N     | /idth(GeV)   | Br(*10-4) |            |  |
|-----------|--------------|-------|--------------|-----------|------------|--|
| Input     | output       | Input | output       | Input     | output     |  |
| 2.175     | 2.177± 0.004 | 0.061 | 0.060± 0.010 | 3.23      | 2.99± 0.38 |  |

#### **MC Simulation of J**/ $\psi \rightarrow \gamma \eta \eta$ , $\gamma \eta \eta$ '

(BOSS 6.3.4)  $J/ψ \rightarrow \gamma \eta \eta, \eta \rightarrow \gamma \gamma$ 

**Assume:** 

 $Br(J/\psi \rightarrow \gamma f_J(2220))Br(f_J(2220) \rightarrow \eta \eta) \sim 1*10^{-5}$ 

| <b>J/</b> ψ →γ <b>X,X</b> →ηη | Br<br>(*10 <sup>-5</sup> ) | Efficiency<br>(%) | N <sub>obs</sub> (norm.<br>to 1.8*10 <sup>8</sup><br>J/w) | 8<br>50<br>40<br>30<br>20<br>10 |
|-------------------------------|----------------------------|-------------------|-----------------------------------------------------------|---------------------------------|
| X=f <sub>0</sub> (1500)       | 1.84                       | 23.5              | 188                                                       |                                 |
| X=f <sub>0</sub> (1710)       | 2.88                       | 24.4              | 195                                                       | For f <sub>1</sub> (222)        |
| X=f <sub>0</sub> (2100)       | ~1.0                       | 24.2              | 67.5                                                      | s- 24 4%                        |
| X=f <sub>2</sub> (1910)       | ~1.0                       | 24.2              | 67.4                                                      | с- <b>2</b> <del>т.т</del> /0   |
| X=f <sub>2</sub> (2150)       | ~1.0                       | 24.2              | 67.6                                                      | σ=18 MeV                        |
| X=f <sub>J</sub> (2220)       | ~1.0                       | 24.4              | 68.0                                                      | Significand                     |



Significance: 4.8 σ

#### (BOSS 6.3.4)

| $J/\mu \rightarrow \gamma nn^2$ , $n \rightarrow \gamma \gamma$ , $n^2 \rightarrow n\pi\pi$                                    |                            |                          |                                                        |               |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|--------------------------------------------------------|---------------|--|--|--|
| Assume:<br>Br( $J/\psi \rightarrow \gamma$                                                                                     | f <sub>J</sub> (2220       | ))Br(f <sub>J</sub> (222 | 0) →ηη') ~1*1                                          |               |  |  |  |
| $ \begin{array}{c} \textbf{J/\psi} \rightarrow \gamma \textbf{X}, \\ \textbf{X} \rightarrow \eta \eta \textbf{'} \end{array} $ | Br<br>(*10 <sup>-5</sup> ) | Efficiency<br>(%)        | N <sub>obs</sub> (norm.<br>to 1.8*10 <sup>8</sup> J/ψ) | Events / (0.0 |  |  |  |
| X=f <sub>0</sub> (1500)                                                                                                        | 1.8                        | 6.73                     | 15.0                                                   | 6<br>4        |  |  |  |
| X=f <sub>0</sub> (1710)                                                                                                        | 2.8                        | 7.15                     | 24.8                                                   | 2-<br>0       |  |  |  |
| X=f <sub>0</sub> (2100)                                                                                                        | ~1.0                       | 7.90                     | 9.78                                                   | For           |  |  |  |
| X=f <sub>2</sub> (1910)                                                                                                        | ~1.0                       | 7.92                     | 9.80                                                   | e= 3          |  |  |  |
| X=f <sub>2</sub> (2150)                                                                                                        | ~1.0                       | 8.31                     | 10.3                                                   | σ=]           |  |  |  |
| X=f <sub>J</sub> (2220)                                                                                                        | ~1.0                       | 8.62                     | 10.7                                                   | Sig           |  |  |  |



#### Search for 1<sup>-+</sup> in $J/\psi \rightarrow \rho^0 \eta \pi^0$

```
· assuming 2.5 × BESII J/\psi events
```

J/ψ→ρa<sub>0</sub>(980), ρa<sub>2</sub>(1320), ρπ(1390), ρa<sub>2</sub>(1700) are included.

the spin-parity of each component as well as the interference between them are considered.

- background included (estimated from sideband, about 10%)
- a full PWA is performed.

#### Comparison of generated data and PWA projections





# Input/output check

|                       | Mass(MeV/c <sup>2</sup> ) |         | Width(MeV/c <sup>2</sup> ) |        | Fraction(%) |             |
|-----------------------|---------------------------|---------|----------------------------|--------|-------------|-------------|
|                       | input                     | output  | input                      | output | input       | output      |
| a <sub>2</sub> (1320) | 1318                      | 1320±2  | 107                        | 112± 4 | 20.84       | 19.49± 0.80 |
| π <sub>1</sub> (1400) | 1376                      | 1380 ±8 | 360                        | 376±16 | 14.57       | 14.66± 1.30 |

# **Structures in** $\chi_{c0} \rightarrow \pi^+ \pi^- K^+ K^-$ at BESIII



# Summary

- Recent light hadron spectroscopy results from BELLE, BABAR, CLEO, KLOE and BESII are presented.
- = 100M  $\psi$ (2S) data are accumulated at BESIII. Will take J/ $\psi$  data soon.
- Expecting new and exciting results from new data.





#### comparison of inputs/outputs for X(1835)

#### Input: mass = 1.833 GeV Γ= 0.066 GeV (for γρ mode) 0.060 GeV (for ηπ<sup>+</sup>π<sup>-</sup> mode) Br=2.09 ×10<sup>-4</sup>

|          | Reso.(MeV) |        | Eff. (%) |        | M(GeV)      | Г <b>(GeV)</b> | Br(×10 <sup>-4</sup> ) |
|----------|------------|--------|----------|--------|-------------|----------------|------------------------|
|          | BESII      | BESIII | BESII    | BESIII | output      | output         | output                 |
| η'→γρ    | 13.0       | 4.2    | 4.9      | 19.0   | 1.831±0.002 | 0.067±0.009    | 2.0±0.3                |
| η'→ηπ⁺π⁻ | 12.0       | 3.8    | 3.7      | 12.8   | 1.829±0.003 | 0.056±0.008    | 1.9±0.2                |

#### Study of the inclusive photon spectrum

- Glueballs can be largely produced in J/ψ radiative decays. The inclusive photon spectrum provides a good lab. to search for glueballs and other new states.
- Measure the absolute branching ratios of the radiative decays.
- Only EMC information is used. Already have a better agreement between data and MC.
- Large statistics compared with the exclusive decays. Can be carried out at the very beginning of BESIII's data taking.

#### The $\gamma$ energy spectrum in J/ $\psi \rightarrow \gamma X$ (MCTruth)

#### 15M J/ $\psi$ $\rightarrow$ anything MC sample

Mix J/ $\psi \rightarrow \gamma f_J(2220)$  (Br=2.5\*10<sup>-3</sup>) into the inclusive sample



# Decay modes of $f_J(2220)$

#### $J/\psi \to \gamma \; f_J(2220) \; \; on \; PDG:$

| $\gamma f_J(2220)$                                   | > 2.50          | $\times 10^{-3}$ CL=99.9% | 745 |
|------------------------------------------------------|-----------------|---------------------------|-----|
| $\gamma f_J(2220) \rightarrow \gamma \pi \pi$        | (8 ±4           | $) 	imes 10^{-5}$         | -   |
| $\gamma f_J(2220) \rightarrow \gamma K \overline{K}$ | $(8.1 \pm 3.0)$ | ) $	imes$ 10 $^{-5}$      | -   |
| $\gamma f_J(2220) \rightarrow \gamma p \overline{p}$ | ( $1.5\pm0.8$   | $3)	imes 10^{-5}$         | -   |

- The known decay modes of  $f_J(2220) \sim 4\%-10\%$
- For different f<sub>J</sub>(2220) decay modes, the effs are different.
- Study the sensitivity of f<sub>J</sub>(2220) under 2 assumptions

#### Two assumptions for $f_J(2220)$ decays

- 10% known modes + 70% (ηη+ηη'+η'η') +20% 4 prong
- **4% known modes + 96% (**ηη+ηη'+η'η')

| Channel                                                 | Efficiency | Assumption 1<br>eff. = 15.2% | Assumption 2<br>eff. = 11.1% |
|---------------------------------------------------------|------------|------------------------------|------------------------------|
| K <sub>S</sub> <sup>0</sup> K <sub>S</sub> <sup>0</sup> | 18.12%     | 10%                          | 4%                           |
| K⁺K <sup>-</sup>                                        | 37.0%      |                              |                              |
| рр                                                      | 17.06%     |                              |                              |
| $\pi^+\pi^-$                                            | 35.66%     |                              |                              |
| ηη                                                      | 15.2%      | 70%                          | 96%                          |
| ηη'                                                     | 9.2%       |                              |                              |
| η'η'                                                    | 6.6%       |                              |                              |
| π+π-π+π-                                                | 26.7%      | 20%                          | 0%                           |
| Κ+Κ-π+π-                                                | 20.5%      |                              |                              |

#### Inclusive photon spectrum under two assumptions

sta 6800

5660

E6200 6000

5800

5600

assumption 2





| $ \begin{array}{c} 400 \\ \hline 200 \\ \hline 200 \\ \hline 100 \\ \hline 0.60 \\ 0.62 \\ 0.64 \\ 0.66 \\ 0.66 \\ 0.68 \\ 0.70 \\ 0.72 \\ 0.74 \\ 0.74 \\ 0.76 \\ 0.78 \\ 0.80 \\ \hline 0.78 \\ 0.80 \\ \hline 0.70 \\ 0.72 \\ 0.74 \\ 0.76 \\ 0.78 \\ 0.78 \\ 0.80 \\ \hline 0$ |       | $J_{3400}$ $\gamma f_0(2100)$ and $\gamma f_4(2050)$ considered.<br>5000 5000 5000 5000 5000 5000 5000 500 |              |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------|--------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | input | Assumption 1                                                                                               | Assumption 2 |  |
| N(f <sub>J</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 5627±595                                                                                                   | 4185±554     |  |
| Br(J/ ψ→γf <sub>J</sub> (2220))<br>(× 10 -3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5   | 2.46±0.26                                                                                                  | 2.51±0.26    |  |
| E <sub>γ</sub> (MeV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 745   | 744.3±1.8                                                                                                  | 745.6±2.2    |  |
| M (f <sub>J</sub> )(MeV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2230  | 2231.9±2.5                                                                                                 | 2230.2±3.1   |  |
| Significance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 10.0σ                                                                                                      | 7.7σ         |  |