The *D* and D_s Spectrum

Torsten Schröder Ruhr-Universität Bochum for the BaBar-Collaboration

> Charm 09 Leimen 20th – 22nd May 2009

- Motivation
- Charm Production at *B*-Factories
- *D* Meson Spectrum and its Candidates
- D_s Meson Spectrum and its Candidates
- Outlook

Motivation

• Until 2003: D/D_s spectra not very exciting

Torsten Schröder

Motivation

- After 2003: Further states, partly very narrow (D_s system)
- Not consistent with theoretical expectations $[D_{s0}^*(2317), D_{s1}(2460)]$

- Nature of the recently found states?
 - $c\overline{u}/c\overline{d}$, $c\overline{s}$ states
 - Tetraquark states
 - Molecular states (near threshold)
- Experimental observables
 - Masses
 - Total Widths
 - Spin-Parity
 - Isospin
 - Partial decay widths
 - Mixing angles

Charm Production at B-Factories

 \overline{c}

• Resonant $\Upsilon(4S) [\Upsilon(2S), \Upsilon(3S), \Upsilon(5S)]$ $e^+e^- \rightarrow \gamma^* \rightarrow b\overline{b}$ favored decay: $b \rightarrow c W^ B^0, B^+, B_s \begin{cases} \overline{b} \\ \sigma \end{cases}$

 e^+

• non-resonant $q\overline{q}$ production: $e^+e^- \rightarrow \gamma^* \rightarrow q\overline{q}$ cc̄-events rich source for *D* and *D_s* mesons

$e^+e^- \rightarrow$	σ [nb]
bb	1,05
cē	1,30
ss	0,35
dd	0,35
uū	1,39

BABAR integrated luminosity 531 fb^{-1} $\rightarrow 558 \cdot 10^6 \text{ b}\overline{\text{b}} \text{ pairs}$ $e^ \rightarrow 690 \cdot 10^6 \text{ c}\overline{\text{c}} \text{ pairs}$ Balla integrated luminosity 021 fl

Belle integrated luminosity 921 fb⁻¹

B-factories \rightarrow Charm physics studies

Experimental Overview

Electron-Positron Collider: PEP-II / SLAC

Torsten Schröder

Charm 2009, Leimen

D Meson Spectrum

S-wave states (L=0)
 D⁰/D[±] (Mark I, 1975)
 D^{*0}/D^{*±} (Mark I, 1975)

D Meson Spectrum

D Meson Spectrum

Charm 2009, Leimen

 D^0 , D^{\pm} - Production

D^0 m = 1864 84 + 0.17 MeV/c ²	(PDG 08)				
$c\tau = 122.9 \ \mu m$		Topologi	cal mo	des	
$D^{\pm} m = 1869.62 \pm 0.20 \text{ MeV/c}^2$ c\tau = 311.8 \mum	0-prongs 2-prongs 4-prongs 6-prongs	[vv] [ww]	(15 (71 (14.6 (1.2	$\pm 6 \\ \pm 6 \\ \pm 0.5 \\ +1.3 \\ -0.7$) %) %) %) × 10 ⁻³
$J^{P}=0^{-}$ Consistent with angular distributions D Ground state $1^{1}S_{0}$	e^+ anything μ^+ anything K^- anything	Inclusiv [xx]	e mod (6.53 (6.7 (54.7	± 0.17 ± 0.6 ± 2.8) %) %) %
200 decay modes studied Study of weak decays $D^0 - \overline{D}^0$ Mixing See other talks on various <i>D</i> studies	K° anything $+$ K° anything K^{+} anything $K^{*}(892)^{-}$ anything $\overline{K}^{*}(892)^{0}$ anything $K^{*}(892)^{+}$ anything $\kappa^{*}(892)^{0}$ anything η anything η' anything ϕ anything		(47 (3.4 (15 (9 < 3.6 (2.8 (9.5 (2.48 (1.05	$\pm 4 \\ \pm 0.4 \\ \pm 9 \\ \pm 4 \\ \pm 1.3 \\ \pm 0.9 \\ \pm 0.27 \\ \pm 0.11 \\ \pm 0.11$) %) %) %) %) %) %

Torsten Schröder

Charm 2009, Leimen

 $D^*(2007)^0/D^*(2010)^{\pm}$ Parameters, Decays ...

D*(2007) ⁰ DECAY MODES	Fraction (Γ_i/Γ)
$ D^0 \pi^0 D^0 \gamma $	$(61.9\pm2.9)\%$ $(38.1\pm2.9)\%$

D*(2010)[±] DECAY MODES Fraction (Γ_i/Γ)

$D^0 \pi^+$	(67.7±0.5) %
$D^+ \pi^0$	$(30.7\pm0.5)~\%$
$D^+\gamma$	$(1.6\pm0.4)\%$

D^{*0}	$m = 2006.97 \pm 0.19 \text{ MeV/c}^2$
	$\Gamma < 2.1 \text{ MeV}$
$D^{*\pm}$	$2010.27 \pm 0.17 \text{ MeV/c}^2$
	$\Gamma = 96 \pm 22 \text{ keV}$
	$J^{P} = 1^{-}$ Consistent with
	$1^{3}S_{0}$ angular distributions

Torsten Schröder

Charm 2009, Leimen

 $D_1(2420)$ – Production and Decays

$$\begin{array}{ll} m = 2422.3 \pm 1.3 \ \mathrm{MeV/c^2} \\ \Gamma = 20.4 \pm 1.7 \ \mathrm{MeV} \\ \end{array} \\ \mathbf{D}_1^{\pm} & m = 2423.4 \pm 3.1 \ \mathrm{MeV/c^2} \\ \Gamma = 25 \pm 6 \ \mathrm{MeV} \\ \end{array}$$

Not seen in color suppressed decays.

Angular analysis consistent with spin 1

Phys. Lett. B232, 398 (1989)

Seen in $D^*\pi$, not in $D\pi$ Decay pattern rules out 0^+ , 2^+ Two $J^P = 1^+$ states Mixing with $D_1(2430)$

62 fb⁻¹ Phys. Rev. D69 112002 (2004)

Dalitzplot \rightarrow Mixing angle $\theta \approx$ -0.10 \pm 0.03 \pm 0.02 rad

$D_1(2430)$ – Production, Parameters...

Torsten Schröder

Charm 2009, Leimen

 $D_2^*(2460)$ - Production

Torsten Schröder

Charm 2009, Leimen

The D and D_s Spectrum - 19

$D_2^*(2460)$ – Parameters and Decays

$D_{\rm s}$ Meson Spectrum

$D_{\rm s}$ Meson Spectrum

Torsten Schröder

Charm 2009, Leimen

<u>cc</u> continuum events

<u>*B* decays</u> (first seen in *B* decays by Belle (first observation of this state by BaBar in e⁺e⁻ $B \to D_{s0}^{*}(2317)D, D_{s0}^{*} \to D_{s}\pi^{0}$ $\rightarrow D_{s}^{+}\pi^{0} + X)$ (2 MeV/c²) 1400 s **10** [$M(D_s\pi^0) - M(D_s)$ **AB**AR 6.7 σ signif. 5 Candidates 0.2 0.3 0.5 0.6 (GeV) 0.4 1000 $B \rightarrow D_{s0}^{*}(2317)K$ 800 251) D*(2317)+K 368 fb⁻¹ Events / 8 MeV/c 600 hep-ex/ N=35.3±6.4ev 3) 400 0507064 9.2 σ 200 0 L 2.1 2.2 2.3 2.5 2.6 $D_{s}^{*} \pi^{0}$ Invariant Mass (GeV/c²) 232 fb⁻¹ Backgr.: 1) $D_s^* \rightarrow D_s \pi^0$ Phys. Rev. D74 0.5 0.72) $D_s^*(\rightarrow D_s \gamma)$ +wrong γ 0.6 $M(D_x \pi^0) \cdot M(D_x) (GeV/c^2)$ 032007 (2006) 3) $D_{s1}(2460) (\rightarrow D_s \pi_0)$ -missing γ Torsten Schröder Charm 2009, Leimen The D and D_s Spectrum - 25

Mass m = $2317.8 \pm 0.6 \text{ MeV/c}^2$ (PDG 08)Decay width $\Gamma < 3.8 \text{ MeV}$ Very narrow

Observations

- Mass too low compared with old potential models
 - (Godfrey, Dipierro)
 - New models work better
- Mass lies below *DK* threshold
 - \rightarrow only isospin-violating and
 - electromagnetic decays possible
 - \rightarrow Explanation of small width

$D_{s0}^{*}(2317)^{\pm}$ DECAY MODES	Fraction (Γ_j/Γ)		
$D_s^+ \pi^0$	seen		
$D_{s}^{+}\pi^{0}\pi^{0}$	not seen		

$D_{s0}^{*}(2317)^{+}$ – Parameters

$D_{s0}^{*}(2317)^{+}$ – Nature of State

Molecule state? • / (3.2 MeV/c²) $D_{s0}^{*}(2317)^{0} \rightarrow D_{s}^{+}\pi^{-}$ 500 Search for $D_{s0}^{*}(2317)^{0}$ and $D_{s0}^{*}(2317)^{++}$ companions 400 300 Candidates 200 കുറ്റുകയ്യാം പ്രാംപ്പെട്ടും പ്രംപ്പേട്ടും പ്രംപ്പേട്ടും പ്രംപ്പേട്ടും പ്രംപ്പേട്ടും പ്രംപ്പേട്ടും പ്രംപ്പം no signal in $D_s^+\pi^-$ and $D_s^+\pi^+$ 100 Isospin = 0400 compatible with $c\bar{s}$ state $D_{s0}^{*}(2317)^{++} \rightarrow D_{s}^{+}\pi^{+}$ 300 200 BABAR 100 too and a contraction of the 232 fb⁻¹ 0 EL 2.25 $\overset{2.3}{2.317}\overset{2.35}{}$ 2.45 2.5 2.55 2.6 2.4 Phys. Rev. D74 $D_s^+\pi$ Invariant Mass (eV/c^2) 032007 (2006)

Torsten Schröder

Charm 2009, Leimen

The D and D_s Spectrum - 28

$$\frac{\mathcal{B}(B^0 \to D^- D^*_{s0} (2317)^+)}{\mathcal{B}(B^0 \to D^- D^+_s)} \approx 0.1$$

(in constrast to HQET ≈ 1)

Phys. Rev. Lett. 94 061802 (2005) 140 fb⁻¹

- Strange process: Both initial quarks undergo weak decay $(b\overline{d} \rightarrow cs\overline{s}\overline{u})$
- Possible diagrams:

Belle: $B^0 \to D_{s0}^* (2317)^- K^+$

a) PQCD factorizationb) W exchange tree with FSI

c) Exotic: Tetraquark

 $\frac{\mathcal{B}(B^0 \to D^*_{s0}(2317)^- K^+)}{\mathcal{B}(B^0 \to D^-_s K^+)} \approx 1$

Conclusion: cs̄ state, but other explanations not excluded

Torsten Schröder

Charm 2009, Leimen

$D_{s1}(2460)^+$ - Production

(first seen in *B* decays by Belle

<u>*B* decays</u>

 $B \rightarrow D_{s1}(2460)D)$

cc continuum events

(first observation of this state by CLEO in e⁺e⁻ $\rightarrow D_s^* \pi^0 + X$)

Torsten Schröder

Charm 2009, Leimen

	(PDG 08)		
Mass m = 2459.6 ± 0.0	5 MeV/c^2	Decay patte	rn
Decay width $\Gamma < 3.5$ N	lev	<u>Deedy putte</u>	<u></u>
Observations -Mass too low compare	ed with old	Final state	$D_{sJ}(2460)^+$ if $J^P = 1^+$
potential models (Godfrey Dipierro)		$D_s^+\pi^0$	\downarrow \bigtriangledown
New models work better		$D_s^+\gamma$	$\uparrow \triangle$
- Mass lies below D*K threshold		$D_s^+ \pi^0 \gamma$	↑
	unconord	$D_s^*(2112)^+\pi^0$	$\uparrow \triangle$
D _{s1} (2460) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	$D_{sJ}^{*}(2317)^{+}\gamma$	$\uparrow \qquad \bigtriangledown$
$D_{2}^{*+}\pi^{0}$	(48 ±11)%	$D_s^+\pi^0\pi^0$	
$D_{s}^{+}\gamma$	$(18 \pm 4)\%$	$D_s^+ \gamma \gamma$	
$D_{s}^{+}\pi^{+}\pi^{-}$	(4.3± 1.3) %	$D_{s}^{*}(2112)^{+}\gamma$	$\uparrow \qquad \bigtriangleup$
$D_s^{\tilde{*}+}\gamma$	< 8 %	$D_s^+\pi^+\pi^-$	$\uparrow \triangle$
$D^{*}_{20}(2317)^{+}\gamma$	(3.7 + 5.1)%	\uparrow allowed, \Downarrow for	orbidden
50 / /	~ - 2.4/	\triangle observed, ∇	not observed

(Missing modes: more statistic needed)

Relative Branching fractions

Decay mode	Yield	Yield	Efficiency	Product $\mathcal{B}(\overline{B}^0 \to D_{sJ}^+ K^-) \times$	Signif.
	$\Delta M(D_{sJ})$	ΔE	(10^{-4})	$\mathcal{B}(D_{sJ} \to D_s \pi^0(\gamma)) \ (10^{-5})$	σ
$D_{sJ}^{*}(2317)^{+}K^{-}$	35.3 ± 6.4	34.1 ± 6.6	21.9 ± 0.6	$4.4 \pm 0.8 \pm 0.6 \pm 1.1$	9.2
$D_{sJ}(2460)^+K^-$	11.2 ± 5.4	10.2 ± 5.4	59.5 ± 1.4	$0.53 \pm 0.20 \substack{+0.16 \\ -0.15}$	3.1
				$< 0.86 (90\% {\rm C.L.})$	

Different branching fractions \rightarrow Not from same spin doublet

Mixing angle

There are two 1⁺ states, $(D_{s1}(2460)^+, D_{s1}(2536)^+)$

mass difference $\Delta m \approx 76 \text{ MeV}$

 \rightarrow investigation of mixing: see $D_{s1}(2536)^+$

 $D_{s1}(2536)^+$ - Production

 $D_{s1}(2536)^+$ - Parameters

Continuum events $e^+e^- \rightarrow (D^{*+}K)X, D^{*+} \rightarrow D^0\pi^+$ Entr. per 0,3 MeV/c² Entr. per 0,3 MeV/c $D^0 \rightarrow$ $D^0 \rightarrow K^- \pi^+$ 350 250 $K^{-}\pi^{+}\pi^{+}\pi^{-}$ 300 200 250200 150 150 100 100 50 50 0.025 0.03 0.025 0.03 0.045 0.0450.035 $\Delta m(D_{s1}) [GeV/c^2]$ $\Delta m(D_{s1}) [GeV/c^2]$ Large signals \rightarrow Precise measurement of mass, width Bar $m(D_{s1}) - m(D^*) = 524.85 \pm 0.02 \pm 0.04 \text{ MeV}/c^2$ PDG: $525.3 \pm 0.6 \pm 0.1 \text{ MeV/c}^2$ First measurement of $D_{s1}(2536)$ decay width:

 $\Gamma(D_{s1}) = 1.03 \pm 0.05 \pm 0.12$ MeV

232 fb⁻¹ hep-ex/0607084 (preliminary)

Torsten Schröder

Charm 2009, Leimen

$D_{s1}(2536)^+$ – Decays, Parameters D_{s1}(2536)⁺ DECAY MODES Fraction (Γ_i/Γ) Phys. Rev. D 77 $D^*(2010)^+ K^0$ 011102 (2008) seen $D^*(2007)^0 K^+$ $D^+ K^0$ ABAR 347 fb⁻¹ seen not seen $D^0 K^+$ not seen Events / 0.2 $D_s^{*+} \gamma \\ D_s^+ \pi^+ \pi^-$ D₁(2536) 18F(b) possibly seen 16 E seen J = 1First observation of $D_{s1}(2536)^+ \rightarrow D^+\pi^-K^+$ (no D^*) only 2nd three-body decay mode J = 2Entries/0.3 MeV/c² -0.8 -0.6 -0.4 -0.2 -0 150 -1 0.20.4 0.6 0.8 $\cos \theta_{\mathrm{D}^{\star}_{\mathrm{sl}}(2536)}$ 100 🖾 wrong sign $D^+\pi^+K$ Angular analysis 50 Consistent with J = 12560 2510 2540 2550 250025202530MeV/c² $M(D^+\pi^-K^+)$ Phys. Rev. D 77 No signal in *DK* \rightarrow Spin-Parity J^P = 1⁺ 032001 (2008) \rightarrow Unnatural spin parity 426 fb⁻¹

Torsten Schröder

Charm 2009, Leimen

*The D and D*_s *Spectrum - 36*

Phys. Rev. D77 1⁺ Mixing angle 032001 (2008) Belle: $D_{s1}(2536)^+ \to D^{*+}K_s^0, D^{*+} \to D^0\pi^+$ D_{e1} is produced in e⁺e⁻ continuum processes with (small) polarization Observables: 3 angles (α, β, γ) Boost Fit to 3-dimensional angular d^3N distribution D⁺_{al} decay plane BA $\overline{dcoslpha deta dcos\gamma}$ as function of polarization ($\rho_{00} = 2/3(1-w_{3/2}))$) and D/S-wave ratio (SLAC-PUB-6311)

Results:

 $\rho_{00} = 0.49 \pm 0.012 \pm 0.004$ (corresponds to HQET prediction) D/S = $0.63 \pm 0.07 \pm 0.02 \times \exp[\pm i(0.76 \pm 0.03 \pm 0.01)]$ \rightarrow mixing angle (theoretical input)

S-wave dominates contribution to total width ($\Gamma_{\rm S}/\Gamma_{\rm total}{=}0.72\pm0.05\pm0.01)$ in contrast to HQET prediction

$D_{s2}^{*}(2573)^{+}$ – Production and Decays

Torsten Schröder

Charm 2009, Leimen

The D and D_s Spectrum - 38

 $D_{sJ}^{*}(2700)^{+}$ - Production

Torsten Schröder

Charm 2009, Leimen

The D and D_s Spectrum - 39

final state \rightarrow natural spin-parity $J^P = 0^+, 1^-, 2^+ \dots$

Angular distribution Preferred: J^P=1⁻

Possible interpretations:

- Radially excited $2^{3}S_{1}$ (excited D_{s}^{*}) predicted mass ~2720 MeV/c² [1]
- Chiral doublet 1⁻ state to 1⁺ $D_{s1}(2536)^+$ predicted (2721 ± 10) MeV/c² [2]

Confirmation needed

Acta Phys. Pol. B 35, 2377 (2004)

Charm 2009, Leimen

$D_{sJ}^{*}(2860)^{+}$ - Production, Parameters ...

Torsten Schröder

Charm 2009, Leimen

- Necessary ingredients to differentiate among models
 - Accurate total width measurements
 - Hadronic and radiative transitions to
 - $D_{s0}^{*}(2317)/D_{s1}(2460)$ from higher mass states
 - Partial decay widths
 - Test of mixing schemes for $1^+(2^+)$ states
- Tools
 - Ongoing BaBar / Belle / Cleo / CDF / D0 analyses
 - High luminosity *B*-factories
 - LHCb (B_s decays)
 - Charm production with pp, FAIR (High precision widths)

Backup Slides

Torsten Schröder

The Belle Experiment

Torsten Schröder

Charm 2009, Leimen

The D and D_s Spectrum - 44

 $D_{s0}^{*}(2317)^{+}/D_{s1}(2460)^{+}$ decay widths constrained by upper limits based on detector resolution

PANDA approach

• width of a narrow resonance can be determined in a measurement of the energy dependence of the production cross section around the energy threshold

Charm 2009, Leimen

The D and D_s Spectrum - 45

Polarization/alignment of heavy quark mesons in continuum production

- HQET framework (Falk, Peskin: SLAC-PUB-6311 (1993))
 - Fragmentation process so rapid that color magnetic forces have no time to act
 - \rightarrow Spin of light antiquark in the produced meson uncorrelated with that of the heavy quark
- Prediction
 - $D_{(s)}(j=1/2)$ are produced unploarized
 - $D_{(s)}(j=3/2)$ can be produced polarized
 - (both confirmed by experiment)

Polarization/alignment of heavy quark mesons in continuum production

- Definition of $W_{3/2}$ Probabilites for the light degrees of freedom to have helicities -3/2, -1/2, 1/2, 3/2 are (z-axis: direction of heavy quark) $\frac{1}{2}(W_{3/2}), \frac{1}{2}(1-W_{3/2}), \frac{1}{2}(1-W_{3/2}), \frac{1}{2}(W_{3/2})$ \rightarrow Polarization alignment of Q \overline{q} -meson - Probability for helicity 0: $\rho_{00}=2/3(1-w_{3/2})$ (helicity density matrix element) Probability for helicity ± 1 : $\rho_{11} = \rho_{-1-1} = 1/2(1-\rho_{00})$ - Example: $D_{s1}(2536)^+$ HQET prediction: $w_{3/2} = 0.254 \rightarrow \rho_{00 x} \approx 0.50$ (in agreement with experiment)

Note: When $w_{3/2}$ is known for one decay mode, it's the same for the other decay modes

Theoretical Background – S/D-ratio (Mixing angle)

Radiative transitions of D_{sJ} (P-wave charmed-strange mesons)

• E1: $\Gamma(i \to f + \gamma) = \frac{4e_Q^2}{27}k^3(2J_f + 1)| < f|r|i > |^2S_{if}$

(Phys. Lett. B66, 286)

- With $e_Q = effective charge = (m_1e_2-m_2e_1)/(m_1+m_2)$
 - k = momentum of emitted photon = $(M_i^2 M_f^2)/2M_i$
 - $S_{if} = \begin{cases} 1 \text{ for transition between triplett states} \\ 3 \text{ for transition between singulett states} \end{cases}$
- For D_{sJ} : $\frac{\Gamma(D_{sJ} \rightarrow D_s^* \gamma)}{\Gamma(D_{sJ} \rightarrow D_s \gamma)} = \left(\frac{322.7}{442.0}\right)^3 \tan^2 \theta$

$$({}^{3}\mathrm{P}_{1} \rightarrow D_{s}^{*}\gamma, \not \rightarrow D_{s}\gamma / {}^{1}\mathrm{P}_{1} \rightarrow D_{s}\gamma, \not \rightarrow D_{s}^{*}\gamma)$$

Theoretical Background – S/D-ratio (Mixing angle)

Mixing angle (S/D) from polarized meson decay

Example
$$D_{s1}(2536)^+ \rightarrow D^{*+}K_S^0, D^{*+} \rightarrow D^0\pi$$
 (Helicity formalism)

$$\frac{d^3N}{d\cos\alpha d\cos\gamma d\beta} = \frac{9}{4\pi(1+2R_\Lambda)} \left[\cos^2\gamma \left(\rho_{00}\cos^2\alpha + \frac{1-\rho_{00}}{2}\sin^2\alpha\right) + R_\Lambda \sin^2\gamma \left[\frac{1-\rho_{00}}{2}\sin^2\beta + \cos^2\beta \left(\rho_{00}\sin^2\alpha + \frac{1-\rho_{00}}{2}\cos^2\alpha\right)\right] + \frac{\sqrt{R_\Lambda}(1-3\rho_{00})}{4}\sin 2\alpha \sin 2\gamma \cos\beta \cos\xi \right] (1)$$

Dependence on three variables ρ_{00} , R_A , ξ $A_{1,0}$, $A_{0,0}$ helicity amplitudes corresponding to D*+ helicities ±1,0 $A_{1,0} = \frac{1}{\sqrt{3}}(S + \frac{1}{\sqrt{2}}D), A_{0,0} = \frac{1}{3}(S - \sqrt{2}D)$ S,D = S/D-wave amplitudes in $D_{s1}(2536)^+$ decay $R_A^{1/2}e^{i\xi} = A_{1,0}/A_{0,0} = z$ (complex numbers) ρ_{00} = helicity density matrix element

$$D/S = \sqrt{2}(z-1)/(1+2z) = \sqrt{\frac{\Gamma_D}{\Gamma_S}}e^{i\eta}$$

 $\Gamma_{D,S}$ = partial widths of $D_{s1}(2536)^+$, η = phase between D/S-amplitudes Fit of (1) to data $\rightarrow \rho_{00}$, z, D/S

I

Charm 2009, Leimen

The D and D_s Spectrum - 50

Theoretical Background – Potential Models

