(Semi-)leptonic D and D_s decays at the B-factories

Bruce Yabsley

http://belle.kek.jp/~yabsley

Belle collaboration / University of Sydney High Energy Physics group

Charm 2009 Workshop, Leimen/Heidelberg; 22nd May 2009

No! I am not Prince Hamlet, nor was meant to be; Am an attendant lord, one that will do To swell a progress, start a scene or two, Advise the prince; no doubt, an easy tool, Deferential, glad to be of use, Politic, cautious, and meticulous; Full of high sentence, but a bit obtuse; At times, indeed, almost ridiculous — Almost, at times, the Fool.

- from T.S. Eliot, The Love Song of J. Alfred Prufrock

- the temptation is to set the B-factory results to one side
- this would be a mistake (although there are issues to address)

No! I am not Prince Hamlet, nor was meant to be; Am an attendant lord, one that will do To swell a progress, start a scene or two, Advise the prince; no doubt, an easy tool, Deferential, glad to be of use, Politic, cautious, and meticulous; Full of high sentence, but a bit obtuse; At times, indeed, almost ridiculous — Almost, at times, the Fool.

- from T.S. Eliot, The Love Song of J. Alfred Prufrock

- the temptation is to set the B-factory results to one side
- this would be a mistake (although there are issues to address)

No! I am not Prince Hamlet, nor was meant to be; Am an attendant lord, one that will do To swell a progress, start a scene or two, Advise the prince; no doubt, an easy tool, Deferential, glad to be of use, Politic, cautious, and meticulous; Full of high sentence, but a bit obtuse; At times, indeed, almost ridiculous — Almost, at times, the Fool.

- from T.S. Eliot, The Love Song of J. Alfred Prufrock

- the temptation is to set the B-factory results to one side
- this would be a mistake (although there are issues to address)

No! I am not Prince Hamlet, nor was meant to be; Am an attendant lord, one that will do To swell a progress, start a scene or two, Advise the prince; no doubt, an easy tool, Deferential, glad to be of use, Politic, cautious, and meticulous; Full of high sentence, but a bit obtuse; At times, indeed, almost ridiculous — Almost, at times, the Fool.

- from T.S. Eliot, The Love Song of J. Alfred Prufrock

- the temptation is to set the B-factory results to one side
- this would be a mistake (although there are issues to address)

No! I am not Prince Hamlet, nor was meant to be; Am an attendant lord, one that will do To swell a progress, start a scene or two, Advise the prince; no doubt, an easy tool, Deferential, glad to be of use, Politic, cautious, and meticulous; Full of high sentence, but a bit obtuse; At times, indeed, almost ridiculous — Almost, at times, the Fool.

- from T.S. Eliot, The Love Song of J. Alfred Prufrock

• the lattice results versus the threshold results are the main game

the temptation is to set the B-factory results to one side

• this would be a mistake (although there are issues to address)

No! I am not Prince Hamlet, nor was meant to be; Am an attendant lord, one that will do To swell a progress, start a scene or two, Advise the prince; no doubt, an easy tool, Deferential, glad to be of use, Politic, cautious, and meticulous; Full of high sentence, but a bit obtuse; At times, indeed, almost ridiculous — Almost, at times, the Fool.

- from T.S. Eliot, The Love Song of J. Alfred Prufrock

- the lattice results versus the threshold results are the main game
- the temptation is to set the B-factory results to one side

• this would be a mistake (although there are issues to address)

No! I am not Prince Hamlet, nor was meant to be; Am an attendant lord, one that will do To swell a progress, start a scene or two, Advise the prince; no doubt, an easy tool, Deferential, glad to be of use, Politic, cautious, and meticulous; Full of high sentence, but a bit obtuse; At times, indeed, almost ridiculous — Almost, at times, the Fool.

- from T.S. Eliot, The Love Song of J. Alfred Prufrock

- the lattice results versus the threshold results are the main game
- the temptation is to set the B-factory results to one side
- this would be a mistake (although there are issues to address)

2 / 17

Outline

Preliminary remarks

 $\bigcirc D_s^+ \to K^+ K^- e^+ \nu$

Brief reminder: D⁰ form factors and branching fractions
 BaBar: D⁰ → K⁻e⁺ν
 Baller D⁰ → e^{-ℓ+}ν and V^{-ℓ+}ν

• Belle: ${\rm D}^{0} \rightarrow \pi^{-} \ell^{+} \nu$ and ${\rm K}^{-} \ell^{+} \nu$

4 $D_s^+ \rightarrow \mu^+ \nu$ at the B-factories

- BaBar, using charm tagging
- Belle, using fit to the full event
- combining the measurements

BaBar $D_s^+ \rightarrow K^+K^-e^+\nu$: (1) candidate selection

- thrust axis determined:
 - cut $|\cos(\theta_{th})| < 0.6$
 - divide event into hemispheres
- select ${
 m K^+K^-}$ & ${
 m e^+}$, ${\it p_{
 m e}^*}$ > 0.5 ${
 m GeV}$
- kinematic fit $\mathrm{D}_{s}^{+} \rightarrow \mathrm{K}^{+}\mathrm{K}^{-}\mathrm{e}^{+}\nu$
 - D_s-mass constraint
 - D_s direction from recoil
 - E_{ν} from deficit in hemisphere
 - cut $P_{\chi^2} > 1\%$
- bkgd suppression by two Fishers: $c\overline{c}$ -vs- $B\overline{B}$ and signal-vs- $c\overline{c}$
- 31,839 events in signal region:
 - 80% purity
 - 70% of bkgd $\phi+{\rm e}$
 - note S–P interference:

BaBar $D_s^+ \rightarrow K^+K^-e^+\nu$: (2) parameter extraction **BaBar** $D_s^+ \rightarrow K^+K^-e^+\nu$: (2) parameter extraction **BaBar** $D_s^+ \rightarrow K^+K^-e^+\nu$: (2) parameter extraction **BaBar** $D_s^+ \rightarrow K^+K^-e^+\nu$: (2) parameter extraction

- \mathcal{L} fit to $(q^2, \cos \theta_e, \cos \theta_K, \chi)$, $5 \times 5 \times 5 \times 5$ bins
- $(0.22^{+0.12}_{-0.08} \pm 0.03)\%$ S-wave
- $\mathcal{B}_{\phi e \nu} = (2.61 \pm 0.03 \pm 0.08 \pm 0.15)\%;$ $D_s \rightarrow KK\pi$ as reference

Single-pole dominance assumed:

- $r_V = V(0)/A_1(0)$ = 1.849 ± 0.060 ± 0.095
- $r_2 = A_2(0)/A_1(0)$ = 0.763 ± 0.071 ± 0.065
- $m_A = (2.28^{+0.23}_{-0.18} \pm 0.018) \,\mathrm{GeV}$
- $A_1(0) = 0.607 \pm 0.011 \pm 0.019 \pm 0.018$
- consistent with quenched lattice, except r_V [lattice has $1.35^{+0.08}_{-0.06}$]

Charm 2009/05/22

5 / 17

BaBar $D^0 \rightarrow K^-e^+\nu$ (D^* tag, unfolding) B. Aubert et al., Flys. Rev. D 76, 052005 (2007)

Bruce Yabsley (Sydney)

Charm 2009/05/22

6 / 17

< 同 ▶

BaBar $D^0 \rightarrow K^-e^+\nu$ (D^* tag, unfolding) B. Aubert et al., Flys. Rev. D 76, 052005 (2007)

Charm 2009/05/22

6 / 17

BaBar $D^0 \rightarrow K^- e^+ \nu$ B. Aubert et al., Phys. Rev. D 76, 052005 (2007)

$f_+(q^2)/f_+(0)$ comparison with FOCUS, lattice

also using z quantity (see R.J. Hill, passim)

excludes ISGW2 and simple pole $m = m_{D_c^*}$; modified pole OK

Belle $D^0 \rightarrow \pi^- \ell^+ \nu$ and $K^- \ell^+ \nu$

Analysis based on **charm tagging** to improve S/B:

• fully-reconstructed charm meson required in one hemisphere:

 $D^{*+} \to \pi^+ D^0 [\to K^0_S \pi^+ \pi^- (\pi^0), K^0_S K^+ K^-, K^0_S \pi^0]$

- $D^+ \to K^- \pi^+ \pi^+ (\pi^0)$, $K^0_S \pi^+ (\pi^0)$, $K^0_S \pi^+ \pi^- \pi^+$, $K^+ K^- \pi^+$, $K^0_S K^+$ • $D^+_s \to K^0_S K^+$, $\phi \rho^+$
- energetic $D_{(s)}$ required, selecting $e^+e^- \rightarrow c\overline{c}$ (not $B\overline{B} \rightarrow D_{(s)}X$)
- $\langle n_{cand} \rangle = 1.2$: choose (higher-purity mode, better vtx quality)
- reconstruct $D_s^* \to \gamma D_s^+ [\to \mu^+ \nu]$ in recoil hemisphere: use ΔM

Requiring μ^+ in the recoil:

- signal: $\mu \pm 2\sigma$
- sideband: $\mu \pm [3\sigma, 6\sigma]$
- $\bullet~5\times10^5$ net signal

Analysis based on **charm tagging** to improve S/B:

• fully-reconstructed charm meson required in one hemisphere:

- $D^0 \to K^- \pi^+ (\pi^0), K^- \pi^+ \pi^- \pi^+$ • $D^{*+} \to \pi^+ D^0 [\to K_S^0 \pi^+ \pi^- (\pi^0), K_S^0 K^+ K^-, K_S^0 \pi^0]$
- $D^+ \to K^- \pi^+ \pi^+ (\pi^0)$, $K^0_S \pi^+ (\pi^0)$, $K^0_S \pi^+ \pi^- \pi^+$, $K^+ K^- \pi^+$, $K^0_S K^+$

•
$$\mathrm{D}^+_s
ightarrow \mathrm{K}^0_S \mathrm{K}^+$$
, $\phi
ho^+$

- energetic $D_{(s)}$ required, selecting $e^+e^- \rightarrow c\overline{c}$ (not $B\overline{B} \rightarrow D_{(s)}X$)
- $\langle n_{cand} \rangle = 1.2$: choose (higher-purity mode, better vtx quality)
- reconstruct $D_s^* \to \gamma D_s^+ [\to \mu^+ \nu]$ in recoil hemisphere: use ΔM

Requiring μ^+ in the recoil:

- signal: $\mu \pm 2\sigma$
- sideband: $\mu \pm [3\sigma, 6\sigma]$
- $\bullet~5\times10^5$ net signal

Analysis based on **charm tagging** to improve S/B:

• fully-reconstructed charm meson required in one hemisphere:

$$D^{0} \rightarrow K^{-}\pi^{+}(\pi^{0}), K^{-}\pi^{+}\pi^{-}\pi^{+}$$

- $D^{*+} \to \pi^+ D^0 [\to K^0_S \pi^+ \pi^- (\pi^0), K^0_S K^+ K^-, K^0_S \pi^0]$
- $D^+ \to K^- \pi^+ \pi^+ (\pi^0)$, $K^0_S \pi^+ (\pi^0)$, $K^0_S \pi^+ \pi^- \pi^+$, $K^+ K^- \pi^+$, $K^0_S K^+$ • $D^+_c \to K^0_S K^+$, $\phi \rho^+$
- energetic $D_{(s)}$ required, selecting $e^+e^- \rightarrow c\overline{c}$ (not $\overline{BB} \rightarrow D_{(s)}X$)
- $\langle n_{cand} \rangle = 1.2$: choose (higher-purity mode, better vtx quality)
- reconstruct $D_s^* \to \gamma D_s^+ [\to \mu^+ \nu]$ in recoil hemisphere: use ΔM

Requiring μ^+ in the recoil:

- signal: $\mu \pm 2\sigma$
- sideband: $\mu \pm [3\sigma, 6\sigma]$
- $\bullet~5\times10^5$ net signal

Analysis based on **charm tagging** to improve S/B:

• fully-reconstructed charm meson required in one hemisphere:

•
$$D^0 \to K^- \pi^+ (\pi^0)$$
, $K^- \pi^+ \pi^- \pi^+$

- $D^{*+} \to \pi^+ D^0 [\to K^0_S \pi^+ \pi^- (\pi^0), K^0_S K^+ K^-, K^0_S \pi^0]$
- $D^+ \to K^- \pi^+ \pi^+ (\pi^0)$, $K^0_S \pi^+ (\pi^0)$, $K^0_S \pi^+ \pi^- \pi^+$, $K^+ K^- \pi^+$, $K^0_S K^+$ • $D^+_s \to K^0_S K^+$, $\phi \rho^+$
- energetic $D_{(s)}$ required, selecting $e^+e^- \rightarrow c\overline{c}$ (not $B\overline{B} \rightarrow D_{(s)}X$)
- $\langle n_{cand} \rangle = 1.2$: choose (higher-purity mode, better vtx quality)
- reconstruct $D_s^* \to \gamma D_s^+ [\to \mu^+ \nu]$ in recoil hemisphere: use ΔM

Requiring μ^+ in the recoil:

- signal: $\mu \pm 2\sigma$
- sideband: $\mu \pm [3\sigma, 6\sigma]$
- $\bullet~5\times10^5$ net signal

[non-K π modes rescaled here \rightarrow]

Bruce Yabsley (Sydney)

Charm 2009/05/22 9 / 17

Analysis based on **charm tagging** to improve S/B:

• fully-reconstructed charm meson required in one hemisphere:

•
$$\mathrm{D}^{0}
ightarrow \mathrm{K}^{-} \pi^{+} (\pi^{0})$$
, $\mathrm{K}^{-} \pi^{+} \pi^{-} \pi^{-}$

- $D^{*+} \to \pi^+ D^0 [\to K^0_S \pi^+ \pi^- (\pi^0), K^0_S K^+ K^-, K^0_S \pi^0]$
- $D^+ \to K^- \pi^+ \pi^+ (\pi^0)$, $K^0_S \pi^+ (\pi^0)$, $K^0_S \pi^+ \pi^- \pi^+$, $K^+ K^- \pi^+$, $K^0_S K^+$ • $D^+_s \to K^0_S K^+$, $\phi \rho^+$
- energetic $D_{(s)}$ required, selecting $e^+e^- \to c\overline{c}$ (not $B\overline{B} \to D_{(s)}X$)
- $\langle n_{cand} \rangle = 1.2$: choose (higher-purity mode, better vtx quality)
- reconstruct $D_s^* \to \gamma D_s^+ [\to \mu^+ \nu]$ in recoil hemisphere: use ΔM

Requiring μ^+ in the recoil:

- signal: $\mu \pm 2\sigma$
- sideband: $\mu \pm [3\sigma, 6\sigma]$
- $\bullet~5\times10^5$ net signal

[non-K π modes rescaled here \rightarrow]

Charm 2009/05/22 9 / 17

Analysis based on **charm tagging** to improve S/B:

• fully-reconstructed charm meson required in one hemisphere:

•
$$D^{*+} \to \pi^+ D^0 [\to K^0_S \pi^+ \pi^- (\pi^0), K^0_S K^+ K^-, K^0_S \pi^0]$$

• $D^+ \to K^- \pi^+ \pi^+ (\pi^0), K^0_S \pi^+ (\pi^0), K^0_S \pi^+ \pi^- \pi^+, K^+ K^- \pi^+, K^0_S K^+$

•
$$D_s^+ \to K_S^0 K^+$$
, $\phi \rho^+$

• energetic $D_{(s)}$ required, selecting $e^+e^- \rightarrow c\overline{c}$ (not $B\overline{B} \rightarrow D_{(s)}X$)

- $\langle n_{cand} \rangle = 1.2$: choose (higher-purity mode, better vtx quality)
- reconstruct $D_s^* \to \gamma D_s^+ [\to \mu^+ \nu]$ in recoil hemisphere: use ΔM

Requiring μ^+ in the recoil:

- signal: $\mu \pm 2\sigma$
- sideband: $\mu \pm [3\sigma, 6\sigma]$
- 5×10^5 net signal

Analysis based on **charm tagging** to improve S/B:

• fully-reconstructed charm meson required in one hemisphere:

$$m D^0
ightarrow {
m K}^-\pi^+(\pi^0)$$
, ${
m K}^-\pi^+\pi^-\pi^-$

- $D^{*+} \to \pi^+ D^0 [\to K^0_S \pi^+ \pi^-(\pi^0), K^0_S K^+ K^-, K^0_S \pi^0]$
- $D^+ \to K^- \pi^+ \pi^+ (\pi^0)$, $K^0_S \pi^+ (\pi^0)$, $K^0_S \pi^+ \pi^- \pi^+$, $K^+ K^- \pi^+$, $K^0_S K^+$
- $D_s^+ \to K_S^0 K^+$, $\phi \rho^+$
- energetic $D_{(s)}$ required, selecting $e^+e^- \rightarrow c\overline{c} \pmod{B\overline{B}} \rightarrow D_{(s)}X$

• $\langle n_{cand} \rangle = 1.2$: choose (higher-purity mode, better vtx quality) • reconstruct $D_s^* \to \gamma D_s^+ [\to \mu^+ \nu]$ in recoil hemisphere: use ΔM

Requiring μ^+ in the recoil:

- signal: $\mu \pm 2\sigma$
- sideband: $\mu \pm [3\sigma, 6\sigma]$
- 5×10^5 net signal

Analysis based on **charm tagging** to improve S/B:

• fully-reconstructed charm meson required in one hemisphere:

- $D^{*+} \to \pi^+ D^0 [\to K^0_S \pi^+ \pi^-(\pi^0), K^0_S K^+ K^-, K^0_S \pi^0]$
- $D^+ \to K^- \pi^+ \pi^+ (\pi^0)$, $K^0_S \pi^+ (\pi^0)$, $K^0_S \pi^+ \pi^- \pi^+$, $K^+ K^- \pi^+$, $K^0_S K^+$

•
$$\mathrm{D}^+_s \to \mathrm{K}^0_S \mathrm{K}^+$$
, $\phi \rho^+$

- energetic $D_{(s)}$ required, selecting $e^+e^- \rightarrow c\overline{c} \text{ (not } B\overline{B} \rightarrow D_{(s)}X)$
- ⟨n_{cand}⟩ = 1.2: choose (higher-purity mode, better vtx quality)
 reconstruct D^{*}_s → γD⁺_s[→ μ⁺ν] in recoil hemisphere: use ΔM

Requiring μ^+ in the recoil:

- signal: $\mu \pm 2\sigma$
- sideband: $\mu \pm [3\sigma, 6\sigma]$
- 5×10^5 net signal

[non-K π modes rescaled here \rightarrow]

Charm 2009/05/22 9 / 17

Analysis based on **charm tagging** to improve S/B:

• fully-reconstructed charm meson required in one hemisphere:

$$D^{0} \to K^{-}\pi^{+}(\pi^{0}), K^{-}\pi^{+}\pi^{-}\pi^{-}$$

- $D^{*+} \to \pi^+ D^0 [\to K^0_S \pi^+ \pi^-(\pi^0), K^0_S K^+ K^-, K^0_S \pi^0]$
- $D^+ \to K^- \pi^+ \pi^+ (\pi^0), K^0_S \pi^+ (\pi^0), K^0_S \pi^+ \pi^- \pi^+, K^+ K^- \pi^+, K^0_S K^+$

•
$$\mathrm{D}^+_s \to \mathrm{K}^0_S \mathrm{K}^+$$
, $\phi \rho^+$

- energetic $D_{(s)}$ required, selecting $e^+e^- \rightarrow c\overline{c} \ (\text{not } B\overline{B} \rightarrow D_{(s)}X)$
- $\langle n_{cand} \rangle = 1.2$: choose (higher-purity mode, better vtx quality)
- reconstruct $D_s^* \to \gamma D_s^+ [\to \mu^+ \nu]$ in recoil hemisphere: use ΔM

Requiring μ^+ in the recoil:

- signal: $\mu \pm 2\sigma$
- sideband: $\mu \pm [3\sigma, 6\sigma]$
- 5×10^5 net signal

- μ : nonshowering tracks in the IFR; $p_{\mu}^* > 1.2 \text{ GeV} [\epsilon_{\mu} \sim 70\%, \epsilon_{\pi} \sim 2.5\%]$
- γ : unassociated cluster in EFC; $E_{\gamma}^* > 0.115 \, \text{GeV}$
- ν : three-stage procedure, including constraint

• cuts vs bkgd: $\begin{cases}
particle loss & \theta_{\nu}^{*} > 38^{\circ} \\
combinatorial & \cos \alpha_{\mu,D_{s}} < 0.90, \ p_{D_{s}^{*}}^{*} > 3.55 \, \text{GeV}
\end{cases}$

Bruce Yabsley (Sydney)

(Semi-)leptonic decays at B-factories

• μ : nonshowering tracks in the IFR; $p_{\mu}^* > 1.2 \,\text{GeV} \, [\epsilon_{\mu} \sim 70\%, \, \epsilon_{\pi} \sim 2.5\%]$

• γ : unassociated cluster in EFC; $E_{\gamma}^* > 0.115 \, \text{GeV}$

• ν : three-stage procedure, including constraint

• cuts vs bkgd: $\begin{cases}
particle loss & \theta_{\nu}^{*} > 38^{\circ} \\
combinatorial & \cos \alpha_{\mu,D_{s}} < 0.90, \ p_{D_{s}^{*}}^{*} > 3.55 \, \text{GeV}
\end{cases}$

Bruce Yabsley (Sydney)

(Semi-)leptonic decays at B-factories

- μ : nonshowering tracks in the IFR; $p_{\mu}^* > 1.2 \,\text{GeV} \, [\epsilon_{\mu} \sim 70\%, \, \epsilon_{\pi} \sim 2.5\%]$
- γ : unassociated cluster in EFC; $E_{\gamma}^* > 0.115 \,\mathrm{GeV}$
- ν : three-stage procedure, including constraint

- μ : nonshowering tracks in the IFR; $p_{\mu}^* > 1.2 \text{ GeV} [\epsilon_{\mu} \sim 70\%, \epsilon_{\pi} \sim 2.5\%]$
- γ : unassociated cluster in EFC; $E_{\gamma}^* > 0.115 \,\mathrm{GeV}$
- ν : three-stage procedure, including constraint
 - $(E_{miss}^*, \vec{p}_{miss}^*)$ from tag + other {tracks, γ }; $E_{miss}^* > 0.38 \,\mathrm{GeV}$ • minimise $|\vec{p}_{miss}^* - \vec{p}_{\nu}^*|$ under $D_s^+ \to \mu^+ \nu$ mass constraint
 - cut $|\vec{p}^*_{miss}| |\vec{p}^*_{\nu}| > -0.06 \,\text{GeV}$ to reject $e^+e^- \rightarrow c\overline{c}$ bkgds

• cuts vs bkgd:
$$\begin{cases} \text{particle loss} & \theta_{\nu}^* > 38^{\circ} \\ \text{combinatorial} & \cos \alpha_{\mu, \mathrm{D}_s} < 0.90, \ p_{\mathrm{D}^*}^* > 3.55 \,\mathrm{Ge} \end{cases}$$

Bruce Yabsley (Sydney)

- μ : nonshowering tracks in the IFR; $p_{\mu}^* > 1.2 \text{ GeV} [\epsilon_{\mu} \sim 70\%, \epsilon_{\pi} \sim 2.5\%]$
- γ : unassociated cluster in EFC; $E_{\gamma}^* > 0.115 \,\mathrm{GeV}$
- ν : three-stage procedure, including constraint
- $(E_{miss}^*, \vec{p}_{miss}^*)$ from tag + other {tracks, γ }; $E_{miss}^* > 0.38 \,\text{GeV}$ • minimise $|\vec{p}_{miss}^* - \vec{p}_{\nu}^*|$ under $D_s^+ \to \mu^+ \nu$ mass constraint • cut $|\vec{p}^*_{miss}| - |\vec{p}^*_{\nu}| > -0.06 \,\text{GeV}$ to reject $e^+e^- \rightarrow c\overline{c}$ bkgds • cuts vs bkgd: $\begin{cases}
 particle loss & \theta_{\nu}^* > 38^{\circ} \\
 combinatorial & \cos \alpha_{\mu,D_s} < 0.90, \ p_{D_*}^* > 3.55 \, \text{GeV}
 \end{cases}$

- μ : nonshowering tracks in the IFR; $p_{\mu}^* > 1.2 \text{ GeV} [\epsilon_{\mu} \sim 70\%, \epsilon_{\pi} \sim 2.5\%]$
- γ : unassociated cluster in EFC; $E_{\gamma}^* > 0.115 \,\mathrm{GeV}$
- ν : three-stage procedure, including constraint
 - $(E_{miss}^*, \vec{p}_{miss}^*)$ from tag + other {tracks, γ }; $E_{miss}^* > 0.38 \,\text{GeV}$
 - minimise $|\vec{p}_{miss}^* \vec{p}_{\nu}^*|$ under $D_s^+ \to \mu^+ \nu$ mass constraint
 - cut $|\vec{p}_{miss}^*| |\vec{p}_{\nu}^*| > -0.06 \,\text{GeV}$ to reject $e^+e^- \rightarrow c\overline{c}$ bkgds

• cuts vs bkgd: $\begin{cases}
particle loss & \theta_{\nu}^{*} > 38^{\circ} \\
combinatorial & \cos \alpha_{\mu,D_{s}} < 0.90, \ p_{D_{*}}^{*} > 3.55 \, \text{GeV}
\end{cases}$

Bruce Yabsley (Sydney)

- μ : nonshowering tracks in the IFR; $p_{\mu}^* > 1.2 \text{ GeV} [\epsilon_{\mu} \sim 70\%, \epsilon_{\pi} \sim 2.5\%]$
- γ : unassociated cluster in EFC; $E_{\gamma}^* > 0.115 \,\mathrm{GeV}$
- ν : three-stage procedure, including constraint
 - $(E_{miss}^*, \vec{p}_{miss}^*)$ from tag + other {tracks, γ }; $E_{miss}^* > 0.38 \,\text{GeV}$
 - minimise $|\vec{p}_{miss}^* \vec{p}_{\nu}^*|$ under $D_s^+ \to \mu^+ \nu$ mass constraint
 - cut $|\vec{p}^*_{miss}| |\vec{p}^*_{\nu}| > -0.06 \,\mathrm{GeV}$ to reject $\mathrm{e^+e^-} \to c\overline{c}$ bkgds

• cuts vs bkgd: $\begin{cases}
particle loss & \theta_{\nu}^{*} > 38^{\circ} \\
combinatorial & \cos \alpha_{\mu,D_{s}} < 0.90, \ p_{D_{*}}^{*} > 3.55 \, \text{GeV}
\end{cases}$

Bruce Yabsley (Sydney)

(Semi-)leptonic decays at B-factories

BaBar $D_s^+ \rightarrow \mu^+ \nu$: (2) signal selection B. Aubert et al., Phys. Rev. Lett. 98, 141801 (2007)

- μ : nonshowering tracks in the IFR; $p_{\mu}^* > 1.2 \text{ GeV} [\epsilon_{\mu} \sim 70\%, \epsilon_{\pi} \sim 2.5\%]$
- γ : unassociated cluster in EFC; $E_{\gamma}^* > 0.115 \,\mathrm{GeV}$
- ν : three-stage procedure, including constraint
 - $(E_{miss}^*, \vec{p}_{miss}^*)$ from tag + other {tracks, γ }; $E_{miss}^* > 0.38 \,\text{GeV}$
 - minimise $|\vec{p}_{miss}^* \vec{p}_{\nu}^*|$ under $D_s^+ \to \mu^+ \nu$ mass constraint cut $|\vec{p}_{miss}^*| |\vec{p}_{\nu}^*| > -0.06 \text{ GeV}$ to reject $e^+e^- \to c\overline{c}$ bkgds

• cuts vs bkgd: $\begin{cases} \text{particle loss} & \theta_{\nu}^* > 38^{\circ} \\ \text{combinatorial} & \cos \alpha_{\mu, \mathrm{D}_s} < 0.90, \ p_{\mathrm{D}_s^*}^* > 3.55 \,\mathrm{GeV} \end{cases}$

Bruce Yabsley (Sydney)

(Semi-)leptonic decays at B-factories

- μ : nonshowering tracks in the IFR; $p_{\mu}^* > 1.2 \,\text{GeV} \, [\epsilon_{\mu} \sim 70\%, \, \epsilon_{\pi} \sim 2.5\%]$
- γ : unassociated cluster in EFC; $E_{\gamma}^* > 0.115 \,\mathrm{GeV}$
- ν : three-stage procedure, including constraint
 - $(E_{miss}^*, \vec{p}_{miss}^*)$ from tag + other {tracks, γ }; $E_{miss}^* > 0.38 \,\mathrm{GeV}$
 - minimise $|\vec{p}^*_{miss} \vec{p}^*_{\nu}|$ under $\mathrm{D}^+_s o \mu^+
 u$ mass constraint
 - cut $|\vec{p}_{miss}^*| |\vec{p}_{\nu}^*| > -0.06 \text{ GeV}$ to reject $e^+e^- \rightarrow c\overline{c}$ bkgds
- cuts vs bkgd: $\begin{cases} \text{particle loss} & \theta_{\nu}^* > 38^{\circ} \\ \text{combinatorial} & \cos \alpha_{\mu, D_s} < 0.90, \ p_{D_s^*}^* > 3.55 \, \text{GeV} \end{cases}$

[26%] semileptonic decays: e^{\pm} , reweighted $\{\epsilon, \Omega\}$ –

[20%] non-signal $D^+_{(s)} \rightarrow \mu^+ \nu$

[1%]
$$D_s^* \to \gamma D_s^+ [\nu \tau^+ \{ \to \nu \pi^+ (\pi^0) \}]$$

Bruce Yabsley (Sydney)

- μ : nonshowering tracks in the IFR; $p_{\mu}^* > 1.2 \,\text{GeV} \, [\epsilon_{\mu} \sim 70\%, \, \epsilon_{\pi} \sim 2.5\%]$
- γ : unassociated cluster in EFC; $E_{\gamma}^* > 0.115 \,\mathrm{GeV}$
- ν : three-stage procedure, including constraint
 - $(E_{miss}^*, \vec{p}_{miss}^*)$ from tag + other {tracks, γ }; $E_{miss}^* > 0.38 \, \text{GeV}$
 - minimise $|\vec{p}_{miss}^* \vec{p}_{\nu}^*|$ under $\mathrm{D}_s^+ \to \mu^+ \nu$ mass constraint
 - cut $|\vec{p}_{miss}^*| |\vec{p}_{\nu}^*| > -0.06 \,\mathrm{GeV}$ to reject $\mathrm{e^+e^-} \to c\overline{c}$ bkgds
- cuts vs bkgd: $\begin{cases} \text{particle loss} & \theta_{\nu}^* > 38^{\circ} \\ \text{combinatorial} & \cos \alpha_{\mu, \mathrm{D}_s} < 0.90, \ p_{\mathrm{D}_s^*}^* > 3.55 \, \mathrm{GeV} \end{cases}$

Bruce Yabsley (Sydney)

(Semi-)leptonic decays at B-factories

- μ : nonshowering tracks in the IFR; $p_{\mu}^* > 1.2 \,\text{GeV} \, [\epsilon_{\mu} \sim 70\%, \, \epsilon_{\pi} \sim 2.5\%]$
- γ : unassociated cluster in EFC; $E_{\gamma}^* > 0.115 \,\mathrm{GeV}$
- ν : three-stage procedure, including constraint
 - $(E_{miss}^*, \vec{p}_{miss}^*)$ from tag + other {tracks, γ }; $E_{miss}^* > 0.38 \, \text{GeV}$
 - minimise $|\vec{p}^*_{miss} \vec{p}^*_{\nu}|$ under $\mathrm{D}^+_s o \mu^+ \nu$ mass constraint
 - cut $|\vec{p}_{miss}^*| |\vec{p}_{\nu}^*| > -0.06 \,\mathrm{GeV}$ to reject $\mathrm{e^+e^-} \to c\overline{c}$ bkgds
- cuts vs bkgd: $\begin{cases} \text{particle loss} & \theta_{\nu}^* > 38^{\circ} \\ \text{combinatorial} & \cos \alpha_{\mu, \mathrm{D}_s} < 0.90, \ p_{\mathrm{D}_s^*}^* > 3.55 \, \mathrm{GeV} \end{cases}$

Bruce Yabsley (Sydney)

(Semi-)leptonic decays at B-factories

- μ : nonshowering tracks in the IFR; $p_{\mu}^* > 1.2 \,\text{GeV} \, [\epsilon_{\mu} \sim 70\%, \, \epsilon_{\pi} \sim 2.5\%]$
- γ : unassociated cluster in EFC; $E_{\gamma}^* > 0.115 \,\mathrm{GeV}$
- ν : three-stage procedure, including constraint
 - $(E_{miss}^*, \vec{p}_{miss}^*)$ from tag + other {tracks, γ }; $E_{miss}^* > 0.38 \, \text{GeV}$
 - minimise $|\vec{p}^*_{miss} \vec{p}^*_{\nu}|$ under $\mathrm{D}^+_s o \mu^+ \nu$ mass constraint
 - cut $|\vec{p}_{miss}^*| |\vec{p}_{\nu}^*| > -0.06 \,\mathrm{GeV}$ to reject $\mathrm{e^+e^-} \to c\overline{c}$ bkgds

• cuts vs bkgd: $\begin{cases} \text{particle loss} & \theta_{\nu}^* > 38^{\circ} \\ \text{combinatorial} & \cos \alpha_{\mu, \mathrm{D}_s} < 0.90, \ p_{\mathrm{D}_s^*}^* > 3.55 \,\mathrm{GeV} \end{cases}$

- μ : nonshowering tracks in the IFR; $p_{\mu}^* > 1.2 \,\text{GeV} \, [\epsilon_{\mu} \sim 70\%, \, \epsilon_{\pi} \sim 2.5\%]$
- γ : unassociated cluster in EFC; $E_{\gamma}^* > 0.115 \,\mathrm{GeV}$
- ν : three-stage procedure, including constraint
 - $(E_{miss}^*, \vec{p}_{miss}^*)$ from tag + other {tracks, γ }; $E_{miss}^* > 0.38 \, {
 m GeV}$
 - minimise $|\vec{p}_{miss}^* \vec{p}_{\nu}^*|$ under $\mathrm{D}_s^+ \to \mu^+ \nu$ mass constraint
 - cut $|\vec{p}_{miss}^*| |\vec{p}_{\nu}^*| > -0.06 \,\mathrm{GeV}$ to reject $\mathrm{e^+e^-} \to c\overline{c}$ bkgds

• cuts vs bkgd: $\begin{cases} \text{particle loss} & \theta_{\nu}^* > 38^{\circ} \\ \text{combinatorial} & \cos \alpha_{\mu, \mathrm{D}_s} < 0.90, \ p_{\mathrm{D}_s^*}^* > 3.55 \,\mathrm{GeV} \end{cases}$

BaBar $D_s^+ \rightarrow \mu^+ \nu$: (3) signal yield

- subtract tag sidebands
- subtract scaled e^{\pm}
- $\Delta M = M(\mu\nu\gamma) M(\mu\nu)$
- fit N_{sig} f_{sig} + N_{bkgd} f_{bkgd}: [systematics from MC f_{bkgd}]
- $N_{sig} = 489 \pm 55 \longrightarrow$

• cf.
$$D_s^* \to \gamma D_s^+ [\to \phi \pi^+]$$

- vtx fits to ϕ , D_s
- $K^+K^- \in m_\phi \pm 2\sigma$ [effective " ϕ " def"]
- $\bullet\,$ criteria as for $\mu\nu$

•
$$N_{\phi\pi} = 2093 \pm 99$$

[cf. $N_{f_0\pi} = 48 \pm 23$ in MC]

BaBar $D_s^+ \rightarrow \mu^+ \nu$: (4) interpretation $\rightarrow f_{D_s}$ B. Autori et al., Phys. Rev. Lett. 91, 141011 (2007)

- tag efficiency pprox cancels in the ratio
- $K^+K^- \longrightarrow$ higher rate of incorrect tag choice: -1.4% correction applied
- MC D_s^* momentum distribution corrected \longrightarrow data
- systematics [mostly using control samples in data]: corrections; selection criteria; vtx fit P; particle ID; MC stats
- $\Gamma_{\mu\nu}/\Gamma_{\phi\pi} = 0.143 \pm 0.018 \pm 0.005$
- BaBar $\mathcal{B}(\mathrm{D}^+_s o \phi \pi^+) = (4.71 \pm 0.46)\%$ chosen for normalisation:
 - issue here in choice of $M(K^+K^-)$ window changes meaning of " ϕ "
 - bypass this here for a few minutes
- BaBar: $\mathcal{B}(\mathrm{D}^+_s o \mu^+
 u) = (6.74 \pm 0.83 \pm 0.26 \pm 0.66) imes 10^{-3}$
- BaBar: $f_{D_s} = (283 \pm 17 \pm 7 \pm 14) \,\mathrm{MeV}$

Selection of $e^+e^- \rightarrow DK X D_s^* [\rightarrow \gamma D_s \{\rightarrow \mu \nu\}]$ events in 548 fb⁻¹ of data

Bruce Yabsley (Sydney)

Selection of $e^+e^- \rightarrow DK X D_s^* [\rightarrow \gamma D_s \{\rightarrow \mu \nu\}]$ events in 548 fb⁻¹ of data

13 / 17

Selection of $e^+e^- \rightarrow DK X D_s^* [\rightarrow \gamma D_s \{\rightarrow \mu \nu\}]$ events in 548 fb⁻¹ of data

Bruce Yabsley (Sydney)

Selection of $e^+e^- \rightarrow DK X D_s^* [\rightarrow \gamma D_s \{\rightarrow \mu \nu\}]$ events in 548 fb⁻¹ of data

•
$$X = n \cdot \pi^{\pm} + m \cdot \gamma$$
; $m = 0, 1$; K
• tracks: $p^{lab} > 100 \text{ MeV}$
• \mathcal{L} cut to ID K-*vs*- π
• e, μ : $p^{lab} > 500 \text{ MeV}$
• photons: $E^{lab} > f(\theta^{lab})$,
50–150 MeV
• π^0 , K_S^0 recon as usual
• $D^{0,+} \rightarrow \overline{K} + n \cdot \pi$ recon:
• $n = 1, 2, 3, \sum B \sim 25\%$
• M-constrained-vtx-fit,
 $P_{i} \approx 0.1\%$

13 / 17

Selection of $e^+e^- \rightarrow DK X D_s^* [\rightarrow \gamma D_s \{\rightarrow \mu\nu\}]$ events in 548 fb⁻¹ of data

•
$$X = n \cdot \pi^{\pm} + m \cdot \gamma$$
; $m = 0, 1$; K
• tracks: $p^{lab} > 100 \text{ MeV}$
• \mathcal{L} cut to ID K-vs- π
• e, μ : $p^{lab} > 500 \text{ MeV}$
• photons: $E^{lab} > f(\theta^{lab})$,
 $50-150 \text{ MeV}$
• π^0 , K_S^0 recon as usual
• $D^{0,+} \rightarrow \overline{K} + n \cdot \pi$ recon:
• $n = 1, 2, 3; \sum \mathcal{B} \sim 25\%$
• M-constrained-vtx-fit,
 $P_{\chi^2} > 0.1\%$
• require $M_{-\gamma}(DKX) \in m_{D_{\gamma}} \pm 150 \text{ MeV}$

X 14 / / ····

•
$$X = n \cdot \pi^{\pm} + m \cdot \gamma$$
; $m = 0, 1$; K
• tracks: $p^{lab} > 100 \text{ MeV}$
• \mathcal{L} cut to ID K-vs- π
• e, μ : $p^{lab} > 500 \text{ MeV}$
• photons: $E^{lab} > f(\theta^{lab})$,
 $50-150 \text{ MeV}$
• π^{0} , K_{S}^{0} recon as usual
• $D^{0,+} \rightarrow \overline{K} + n \cdot \pi$ recon:
• $n = 1, 2, 3; \sum \mathcal{B} \sim 25\%$
• M-constrained-vtx-fit,
 $P_{\chi^{2}} > 0.1\%$
• require $M_{\text{recoil}}(\text{DK } X) \in m_{D_{s}^{*}} \pm 150 \text{ MeV}$

Belle $D_s^+ \rightarrow \mu^+ \nu$: (2) cleanup; "inverse fit" and tag

entries / 6

MeV/c²

entries / 6

- $\gamma \text{ consistent } D_s^* \rightarrow \gamma D_s;$ $M \in m_{D_s} \pm 150 \text{ MeV}$
- tagging K: $\ensuremath{\textit{p}}^*_{\rm K} < 2\,{\rm GeV}$
- tagging D: $\ensuremath{\textit{p}}_{\mathrm{D}}^* > 2\,\mathrm{GeV}$
- signal $\gamma:~{\it E_{\gamma}^{\it lab}}>150\,{\rm MeV}$

M-constrained "inverse" fit for [*i.e.* fit to all event sans] $D_s^* \& D_s$

- require $P_{\chi^2} > 1\%$
- $\langle n_{cand} \rangle \sim 2$
- D,K flavour(s) opp. D_s^{*}: right-sign event
- else: wrong-sign (\rightarrow bkgd model)
- recoil dist^{ns} shown, with fitted backgrounds

Belle $D_s^+ \rightarrow \mu^+ \nu$: (3) $\mu \nu$ events among the D_s tags L. Wilhelm et al. Pine Rev Lett. 100, 201801 (2000)

select subset satisfying

- μ^{\pm} matching \mathbf{D}_{s}^{\pm}
- no extra tracks
- surplus γ : energy cuts
- $\mathrm{e}\nu$ is a model for a.a. bkgds:
 - [18%] non- D_s
 - [7%] leptonic τ
 - [4%] semileptonic D_s
- $M^2_{
 m recoil} \sim m^2_
 u$ shown: \longrightarrow
 - $N_{D_s}^{rec} = 32100 \pm 870 \pm 1210$
 - $N_{\mu
 u}^{rec} = 169 \pm 16 \pm 8$
 - $|\mathcal{B}_{\mu
 u} = (6.44 \pm 0.76 \pm 0.57) imes 10^{-3}$

Belle $D_s^+ \rightarrow \mu^+ \nu$: (4) suppressed details L. Widhalm et al., Phys. Rev. Lett. 100, 241001 (2000)

variation of fit behaviour with multiplicity n_X is taken into account real analysis is done in n_X bins, taking care of data/MC disagreement

HFAG-Charm In Progress [courtesy of Alan Schwartz]

Rather than f_{D_s} "measurements",

one combines compatible ${\cal B}$ or ${\cal B}/{\cal B}$

17 / 17

combined $\mathrm{D}^+_s ightarrow \mu^+ u$ and f_{D_s} results

combined $\mathrm{D}_{s}^{+} ightarrow \mu^{+} u$ and $f_{\mathrm{D}_{s}}$ results

