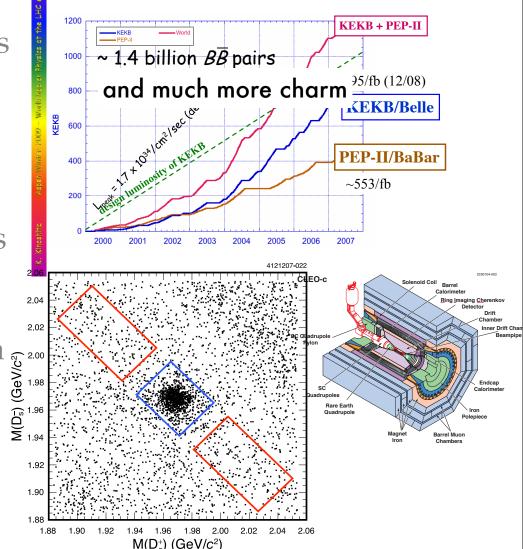
D(S) Branching Fractions Jonas Rademacker on behalf of CLEO-c

21 May 2009, non-leptonic decays session, Charm 2009, Leimen

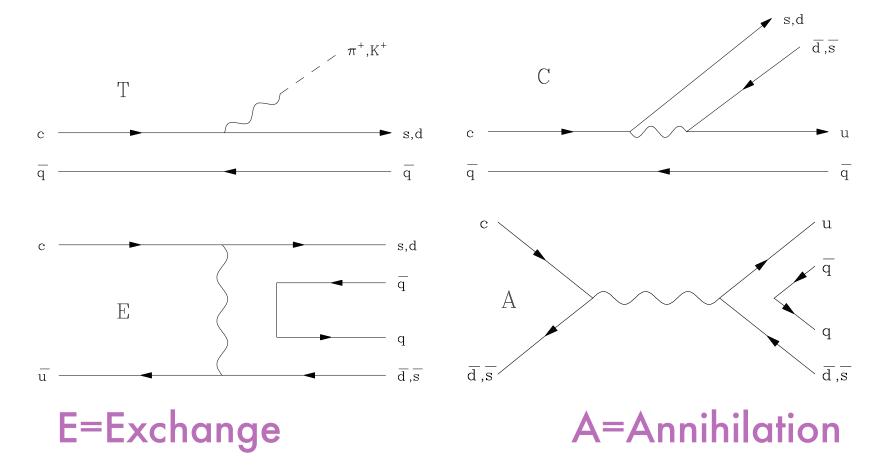

Charm Branching Fractions

- Test approximate symmetries: SU(3)_F, U-spin, Isospin
- Long-distance hadronic interactions hard to calculate, even more important to get data.
- Still provide surprises it is an experiment-led field.
- Input to B physics: U-spin tests, absolute charm B.F. for extracting B-rates from excl. B→DX decays.
- Search for direct CP violation and thus test the SM.
- Need to be measured because they are there.

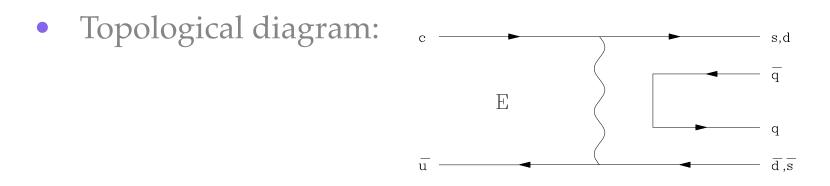
Since last time

Data since Cha

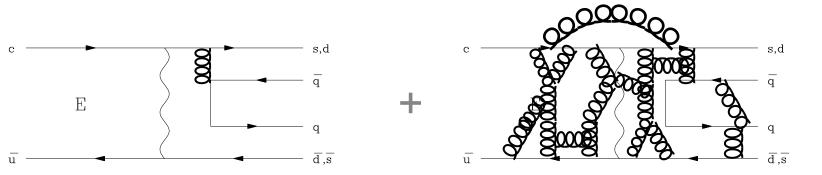
- New data from the B factories
 used for wonderful charm analyses (including B.R.).
- New data and results from dedicated charm experiments FOCUS, CLEO-c.
- FOCUS, CLLC In particular a new large data sample of D_s mesons from CLEO-c running at $e^+e^- \rightarrow \psi(4170) \rightarrow D_S^{+*}D_S^{-}$



Outline

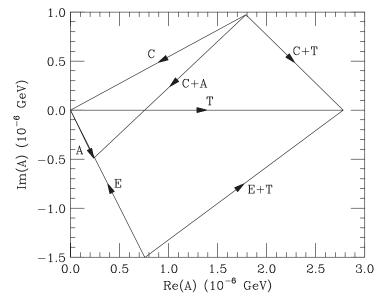

- The topological approach and symmetry tests
 - $D \rightarrow PP, D \rightarrow V\eta$
- Radiative charm decays and long-distance effects
- Baryonic decay of charm
- Absolute branching fractions, golden modes.
- Inclusive D_S Branching Fractions
- Direct CP violation.

Topologies **Topological Approach to Hadronic Decays**


T=Colour-favoured Tree C=Colour-suppressed Tree

Topological Approach to Hadronic Decays

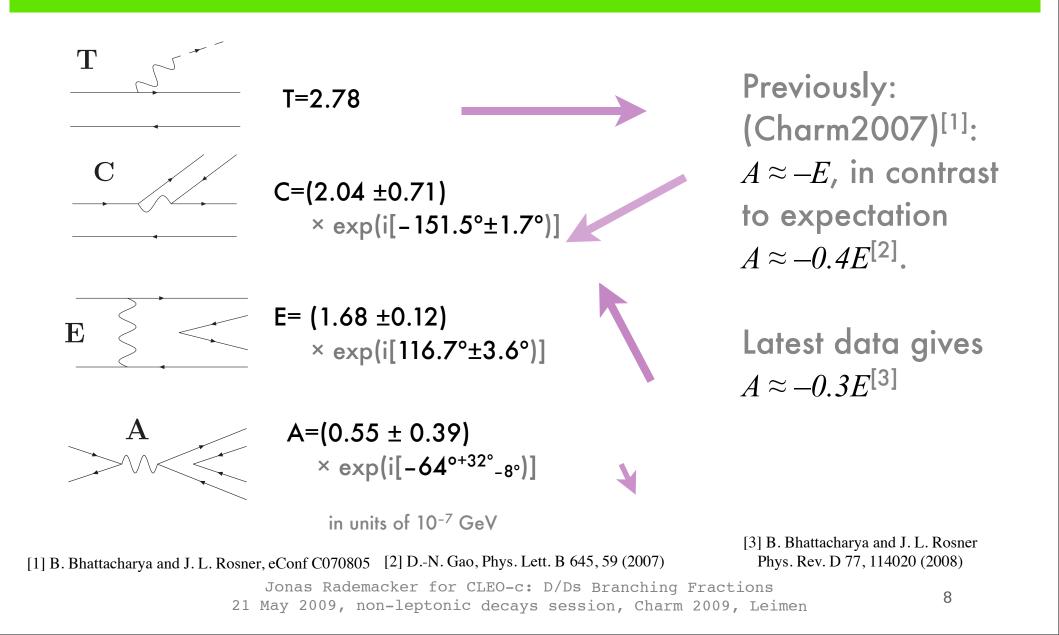
• Includes all hadronic effects to all orders.



• Relies on SU(3)-flavour symmetry

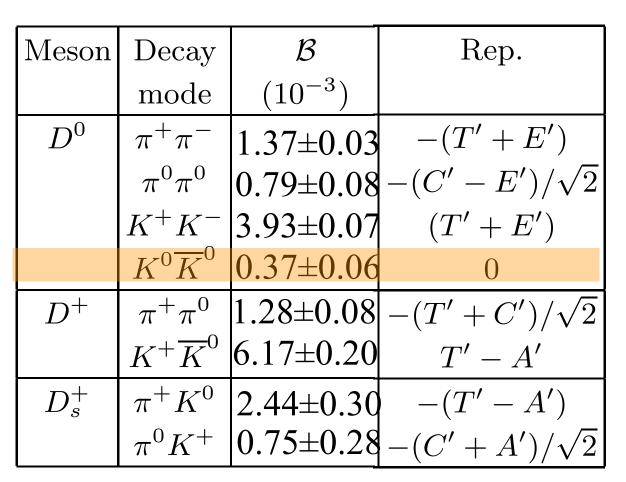
CF decay rates in terms of topology amplitudes.

Meson	Decay	\mathcal{B}	Rep.
	mode	(%)	
D^0		3.89 ± 0.08	T + E
	$\overline{K}^0 \pi^0$	2.24±0.11	$(C-E)/\sqrt{2}$
	$\overline{K}^0\eta$	0.76 ± 0.11	$C/\sqrt{3}$
	$\overline{K}^0\eta'$	1.87 ± 0.28	$-(C+3E)/\sqrt{6}$
D^+	$\overline{K}^0 \pi^+$	2.99±0.07	C+T
D_s^+	$\overline{K}^0 K^+$	2.98±0.27	C + A
	$\pi^+\eta$	1.58±0.21	$(T-2A)/\sqrt{3}$
	$\pi^+\eta'$	3.77±0.39	$2(T+A)/\sqrt{6}$


Ds: CLEO Phys.Rev.Lett.99:191805,2007 D°, D+: CLEO: Phys. Rev. Lett. 100, 161804 (2008)

B. Bhattacharya and J. L. Rosner Phys. Rev. D 77, 114020 (2008)

Can construct complex topological amplitudes by relating (real) decay rates


CF decay rates and amplitudes

- Same topological SU(3)-based approach as for CF
- Notation: SCS amplitudes get prime, i.e. T', S', E' etc
- By SU(3) SCS amplitude = λ CF, i.e. T' = λ T etc
- By and large successful, but with some noticeable SU(3)-breaking effect:

Expect from SU(3): A(D° $\rightarrow \overline{K}^{\circ}K^{\circ}$) = 0

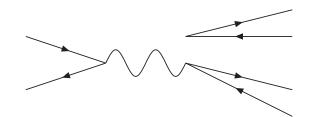
D+ and D°: combine PDG 08 averages with new CLEO results: Phys. Rev. D 77, 091106 (2008)

Ds results: CLEO Phys. Rev. Lett. 100, 161804 (2008) Phys. Rev. Lett. 99, 191805 (2007)

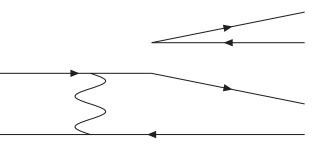
Table by: B. Bhattacharya and J. L. Rosner Phys. Rev. D 77, 114020 (2008) (modifed)

Meson	Decay	\mathcal{B}	Rep.
	mode	(10^{-3})	
D^0	$\pi^+\pi^-$	1.37 ± 0.03	-(T'+E')
	$\pi^0\pi^0$	$0.79{\pm}0.08$	$-(C'-E')/\sqrt{2}$
	K^+K^-	3.93 ± 0.07	(T' + E')
	$K^0 \overline{K}^0$	0.37 ± 0.06	0
D^+	$\pi^+\pi^0$	1.28 ± 0.08	$-(T'+C')/\sqrt{2}$
	$K^+\overline{K}^0$	6.17 ± 0.20	T' - A'
D_s^+	$\pi^+ K^0$	2.44±0.30	-(T'-A')
	$\pi^0 K^+$	0.75 ± 0.28	$-(C'+A')/\sqrt{2}$

Expect from SU(3): $A(D^{\circ} \rightarrow K^{+}\overline{K}^{\circ}) =$ $A(Ds^{+} \rightarrow \pi^{+}K^{\circ}).$


SCS $D^{\circ} \rightarrow PP$ overview

Meson	Decay mode	\mathcal{B} (10 ⁻³)	Rep.	Predicted \mathcal{B} (10 ⁻³)
D^0	$\pi^+ \pi^- \ \pi^0 \pi^0 \ K^+ K^- \ K^0 ar{K}^0$	$\begin{array}{c} 1.37 \pm 0.03^{\rm a} \\ 0.79 \pm 0.08^{\rm a} \\ 3.93 \pm 0.07^{\rm b} \\ 0.37 \pm 0.06^{\rm b} \end{array}$	$-(C'-E')/\sqrt{2}$	2.23 1.27 1.92 0
D^+	$\pi^+ \pi^0 \ K^+ ar K^0$	1.28 ± 0.08^{a} 6.17 ± 0.20^{b}	$\frac{-(T'+C')/\sqrt{2}}{T'-A'}$	0.87 5.12
D_s^+	$\pi^+ K^0 \ \pi^0 K^+$		$-(T' - A') - (C' + A')/\sqrt{2}$	2.56 0.87


Table by: B. Bhattacharya and J. L. Rosner Phys. Rev. D 77, 114020 (2008) D+ and D°: combine PDG 08 averages with new CLEO results: Phys. Rev. D 77, 091106 (2008) Ds results: CLEO Phys. Rev. Lett. 100, 161804 (2008) Phys. Rev. Lett. 99, 191805 (2007)

SCS decays with $\eta^{(\prime)}$

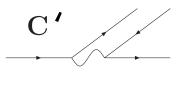
• Do we need additional (OZI-suppressed) Singlet Amplitudes?

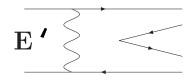
Singlet-Annihilation (S-A)

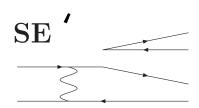
Singlet-Exchange (S-E)

SCS decays with $\eta^{(\prime)}$

 Decays of D^o to η^(') in term of SU(3) topological amplitudes:

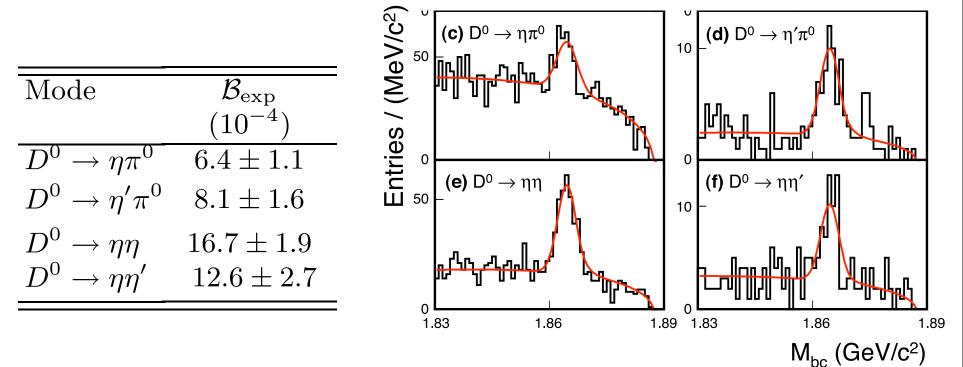

$$-\sqrt{6}\mathcal{A}(D^0 \rightarrow \pi^0 \eta') = 2E' - C' + SE',$$


$$\frac{\sqrt{3}}{2}\mathcal{A}(D^0 \to \pi^0 \eta') = \frac{1}{2}(C' + E') + SE',$$

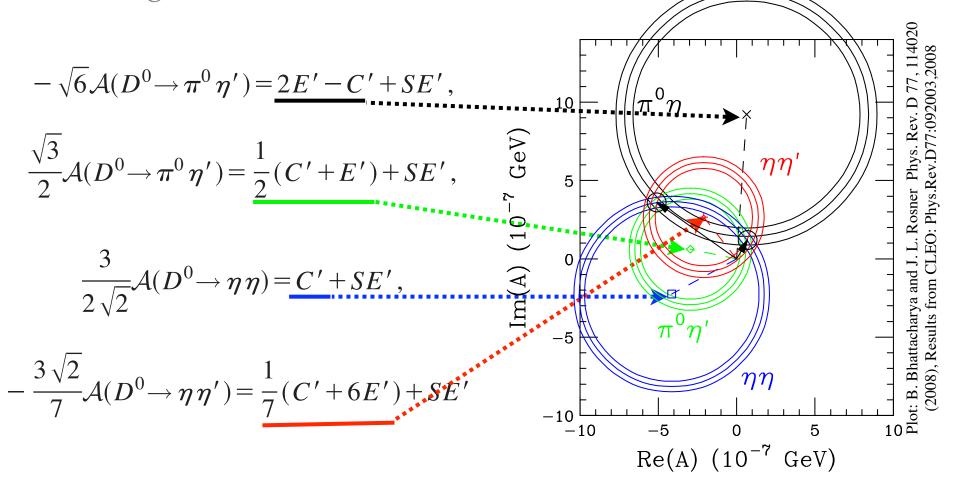

$$\frac{3}{2\sqrt{2}}\mathcal{A}(D^0 \to \eta \eta) = C' + SE',$$

$$-\frac{3\sqrt{2}}{7}\mathcal{A}(D^0 \rightarrow \eta \eta') = \frac{1}{7}(C'+6E')+SE'$$

(the prime in C', E', SE' indicates the SCS amplitude)



SCS decays with $\eta^{(\prime)}$ at CLEO-c


• Measured SCS B.R.:

CLEO: Phys.Rev.D77:092003,2008

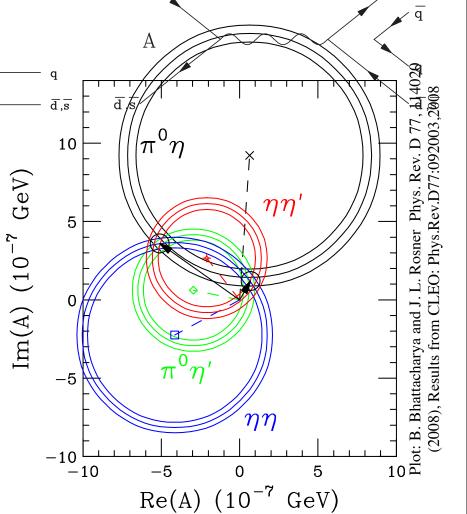
SCS decays with $\eta^{(\prime)}$

• Allowing for non-zero SE'

SCS decays with n⁽⁺⁾

 $\pi^+.K^+$

- Measuring SE'
- Two solutions (units: 10^{-7} GeV); SE' = (5.3±0.5) + i(3.5±0.5)

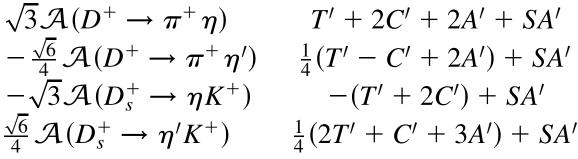

Е

A' = 0.55 - 1.14i.

or

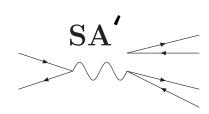
$$SE' = (-0.7 \pm 0.4) + i(1.0 \pm 0.6)$$

for comparison (obtained by scaling CF amplitudes) T' = 6.44; C' = -4.15 - 2.25i;E' = -1.76 + 3.48i;



Jonas Rademacker for CLEO-c: D/Ds Branching Fractions 21 May 2009, non-leptonic decays session, Charm 2009, Leimen

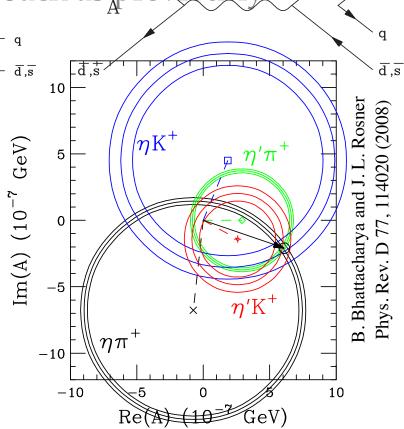
 $\overline{d}, \overline{s}$


SCS decays with n^(')

• Decay of $D^+(s)$ to $\eta^{(\prime)}$ in term of SU(3) topological amplitudes:

T' + 2C' + 2A' + SA'

	mode	BR / 10-4
D^+	$\pi^+\eta$	34.3 ± 2.1^{a}
	$\pi^+\eta^\prime$	$45.2 \pm 3.6^{\rm a}$
D_s^+	$K^+ \eta$	$14.1 \pm 3.1^{\circ}$
	$K^+\eta^\prime$	$15.8 \pm 5.3^{\circ}$


(the prime in T', C', SA' indicate the SCS amplitude)

SCS decays with n^(*)

 $\pi^+.K^+$

- Measuring SA' using the same approach as previously
- Solution (units: $10^{-7} \text{ GeV})$ SA' $\approx -6.1 + 2.1 \text{ i}$
- No zero solution.
- No OZI suppression for SA'?

for comparison (obtained by scaling CF amplitudes) T' = 6.44; C' = -4.15 - 2.25i;E' = -1.76 + 3.48i;

A' = 0.55 - 1.14i.

Jonas Rademacker for CLEO-c: D/Ds Branching Fractions 21 May 2009, non-leptonic decays session, Charm 2009, Leimen

 $\overline{d},\overline{s}$

SU(3)_F and η sum rules

• Expect from SU(3)_F

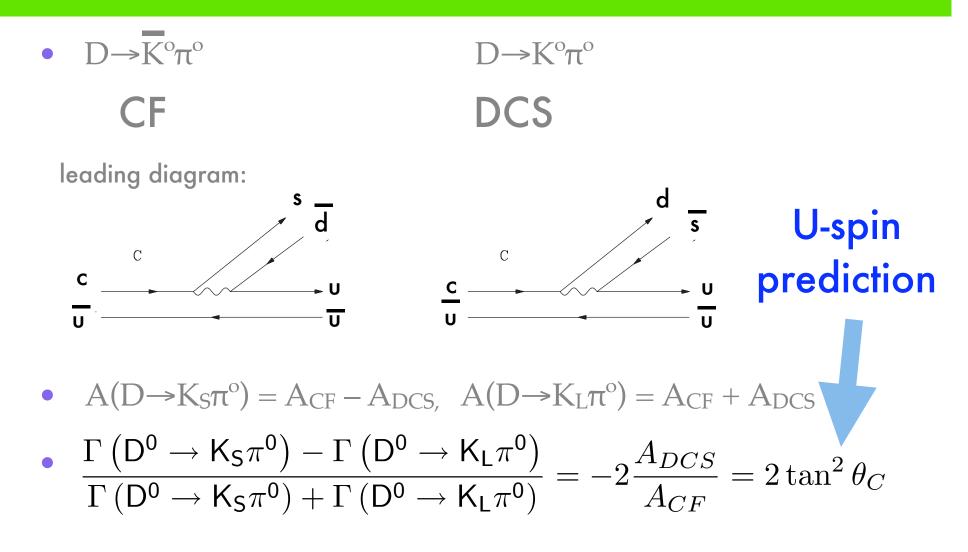
 $8|\mathcal{A}(D^0 \to \pi^0 \eta')|^2 + 16|\mathcal{A}(D^0 \to \pi^0 \pi^0)|^2$

 $= 16 |\mathcal{A}(D^0 \to \pi^0 \eta)|^2 + 9 |\mathcal{A}(D^0 \to \eta \eta)|^2$

• Find

$$8|\mathcal{A}(D^0 \to \pi^0 \eta')|^2 + 16|\mathcal{A}(D^0 \to \pi^0 \pi^0)|^2 = 325 \pm 33$$

$$16|\mathcal{A}(D^0 \to \pi^0 \eta)|^2 + 9|\mathcal{A}(D^0 \to \eta \eta)|^2 = 440 \pm 39$$

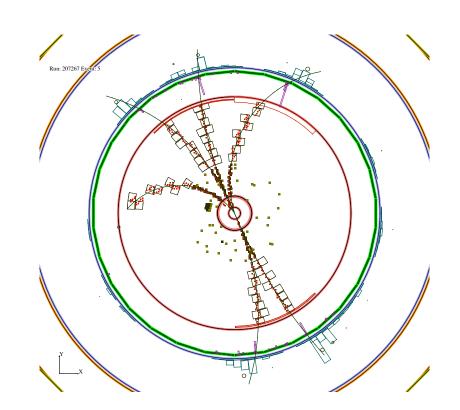

• ca 2σ off

U-spin and $D^{\circ} \rightarrow K_{S,L}\pi^{\circ}$

- Naively, might expect $\Gamma(D^{\circ} \rightarrow K_{S}\pi^{\circ}) = \Gamma(D^{\circ} \rightarrow K_{L}\pi^{\circ})$.
- But in these decays CF A(D° \rightarrow K° π °) and the DCS A(D° \rightarrow K° π °) interfere with a different relative sign.^[1]
- D^o→K_{L,S}π^o asymmetry allow a test of U-spin symmetry.^[1]
- U-spin, s \leftrightarrow d, expected to be better than full SU(3)_f
- Important for certain strategies for extracting the CKM angle γ in decays with tree and penguin contributions, such as $B \rightarrow \pi\pi \leftrightarrow Bs \rightarrow KK$.

[1] I. Bigi and H. Yamamoto, Physics Letters 349 (1995) 363-366

U-spin and $D^{\circ} \rightarrow K_{S,L}\pi^{\circ}$

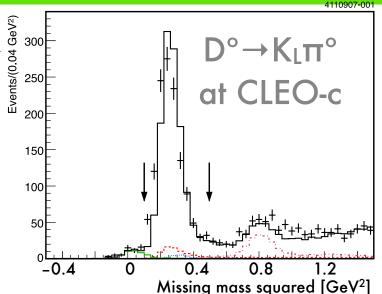

I. Bigi and H. Yamamoto, Physics Letters 349 (1995) 363-366 Jonas Rademacker for CLEO-c: D/Ds Branching Fractions 21 May 2009, non-leptonic decays session, Charm 2009, Leimen

owards Predisions Measurenteents

- Challenging: Invisible K_L , difficult π° .
- CLEO-c:
 - $e+e- \rightarrow \psi(3770) \rightarrow DD$

100% of beam energy converted to DD pair \Rightarrow kinematic constraints.

• Extremely clean environment, good calorimeter



CLEAN-c

 $\psi(3770) \rightarrow D^{0}(K_{S}\pi^{+}\pi^{-})\bar{D}^{0}(K^{+}\pi^{-})$

$D^{\circ} \rightarrow K_{L,S} \pi^{0}$, at CLEO-c

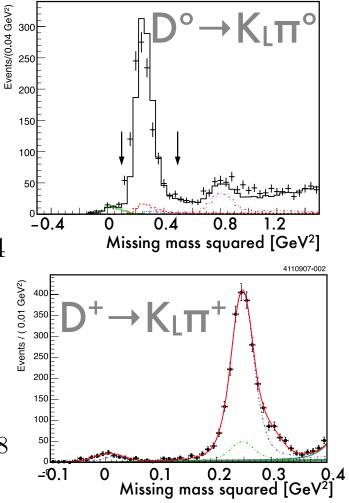
- Clean missing mass-squared peak $m_{K^{0}}^{(5)} = 0.28 GeV^{2}$
- Lines: MC simulation. Crosses: Data.
- Result

$$\frac{\Gamma\left(\mathsf{D}^{\mathsf{0}}\to\mathsf{K}_{\mathsf{S}}\pi^{\mathsf{0}}\right)-\Gamma\left(\mathsf{D}^{\mathsf{0}}\to\mathsf{K}_{\mathsf{L}}\pi^{\mathsf{0}}\right)}{\Gamma\left(\mathsf{D}^{\mathsf{0}}\to\mathsf{K}_{\mathsf{S}}\pi^{\mathsf{0}}\right)+\Gamma\left(\mathsf{D}^{\mathsf{0}}\to\mathsf{K}_{\mathsf{L}}\pi^{\mathsf{0}}\right)}=0.108\pm0.025\pm0.024$$

• In good agreement with U-spin prediction of $2\tan^2\theta = 0.109$

CLEO: PRL 100, 091801 (2008)

$D^+ \rightarrow K_{L,S} \pi^+$ at CLEO-c

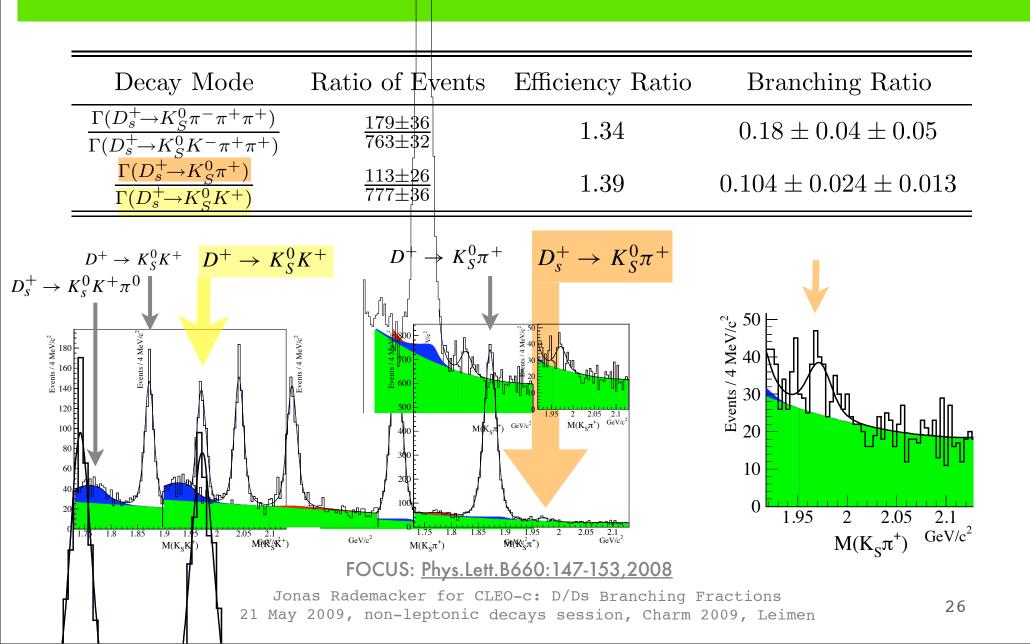

- Similar logic as for D°, but no Uspin symmetry.
- Still, prediction based on topology and SU(3) flavour possible, expect

$$\frac{\Gamma\left(\mathsf{D}^{+}\to\mathsf{K}_{\mathsf{S}}\pi^{+}\right)-\Gamma\left(\mathsf{D}^{+}\to\mathsf{K}_{\mathsf{L}}\pi^{+}\right)}{\Gamma\left(\mathsf{D}^{+}\to\mathsf{K}_{\mathsf{S}}\pi^{+}\right)+\Gamma\left(\mathsf{D}^{+}\to\mathsf{K}_{\mathsf{L}}\pi^{+}\right)}\approx0.04$$

D.-N. Gao, Phys. Lett. B 645, 59 (2007)

• Result

$$\frac{\Gamma\left(\mathsf{D}^{+}\to\mathsf{K}_{\mathsf{S}}\pi^{+}\right)-\Gamma\left(\mathsf{D}^{+}\to\mathsf{K}_{\mathsf{L}}\pi^{+}\right)}{\Gamma\left(\mathsf{D}^{+}\to\mathsf{K}_{\mathsf{S}}\pi^{+}\right)+\Gamma\left(\mathsf{D}^{+}\to\mathsf{K}_{\mathsf{L}}\pi^{+}\right)} = 0.022 \pm 0.016 \pm 0.018$$



CLEO: PRL 100, 091801 (2008)

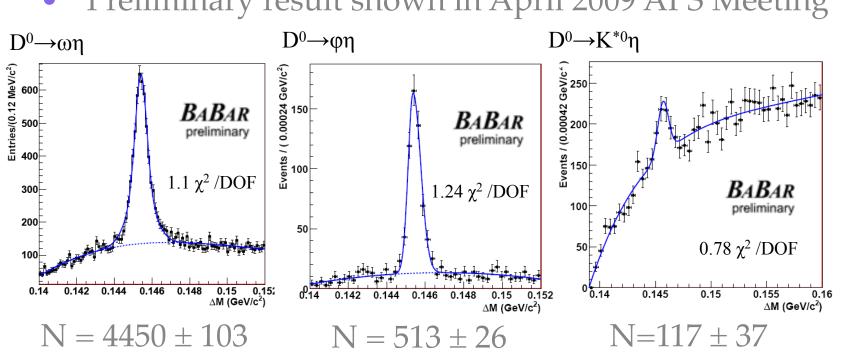
Jonas Rademacker for CLEO-c: D/Ds Branching Fractions 21 May 2009, non-leptonic decays session, Charm 2009, Leimen

4110907-001

Discovery of $D_{S}^{+} \rightarrow K_{S}\pi^{+}(\pi^{-}\pi^{+})$ at FOCUS

- For D°→VP, use same topological approach as for D°→PP. Ignore Zweig-suppressed "singlet" topology (which was needed for D⁺_(s)→Pη).
- Predict SCS B.R. based on CF rates.
- Global fit to topological amplitudes gives two solutions.

Mode	Theory B.F. /10⁻³ B. Bhattacharya, J. L. Rosner, arXiv:0812.3167v1 [hep-ph] (2008)		
	Sol A	Sol B	
D°→φη	0.93 ± 0.09	1.4 ± 0.1	
D°→ωη	1.4 ± 0.09	1.27 ± 0.09	
D°→K*° η	0.038 ± 0.004	0.037 ± 0.004	


$D^{o} \rightarrow V\eta$ Status until March

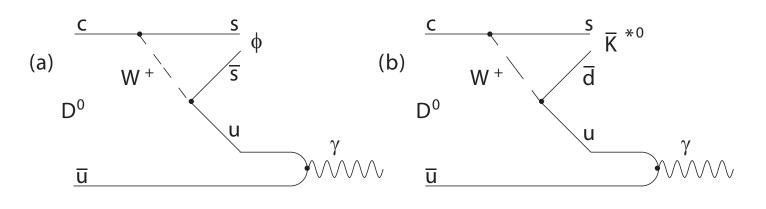
Mode	Theory B.F. /10 ⁻³ B. Bhattacharya, J. L. Rosner, arXiv:0812.3167v1 [hep-ph] (2008)		Experiment until recently
	Sol A	Sol B	
D°→φη	0.93 ± 0.09	1.4 ± 0.1	0.14 ± 0.04 (BELLE) ^[1]
D°→ωη	1.4 ± 0.09	1.27 ± 0.09	
D°→K*° η	0.038 ± 0.004	0.037 ± 0.004	

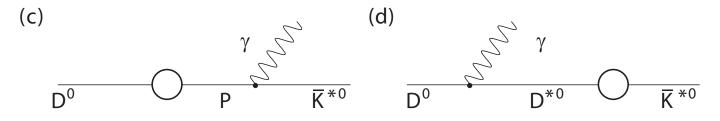
[1] Phys.Rev.Lett.92:101803,2004 [2] Caitlin Malone on behalf of the BaBar Collaboration at APS April Meeting 2009

- BaBar analysed 467 fb⁻¹ data (on and off resonance)
- About 1 billion D mesons in sample

Preliminary result shown in April 2009 APS Meeting*:

*) Caitlin Malone on behalf of the BaBar Collaboration at APS April Meeting 2009 Jonas Rademacker for CLEO-c: D/Ds Branching Fractions 21 May 2009, non-leptonic decays session, Charm 2009, Leimen


$D^{\circ} \rightarrow V\eta$


Mode	Theory B.F. /10 ⁻³ B. Bhattacharya, J. L. Rosner, arXiv: 0812.3167v1 [hep-ph] (2008)		Experiment until recently	BaBar Results (pre April 08 [2	2
	Sol A	Sol B		BF	yield
D°→φη	0.93 ± 0.09	1.4 ± 0.1	0.14 ± 0.04 ^[1]	$0.21 \pm 0.01 \pm 0.02$	513 ± 26
D°→ωη	1.4 ± 0.09	1.27 ± 0.09		$2.21 \pm 0.08 \pm 0.22$	4450 ± 103
D°→K*° η	0.038 ± 0.004	0.037 ± 0.004		$0.048 \pm 0.010 \pm 0.004$	117 ± 37

[1] BELLE: Phys.Rev.Lett.92:101803,2004 [2] Caitlin Malone on behalf of the BaBar Collaboration at APS April Meeting 2009

Radiative Charm Decays

• In contrast to radiative B decays, radiative charm decays are dominated by long-distance contribution

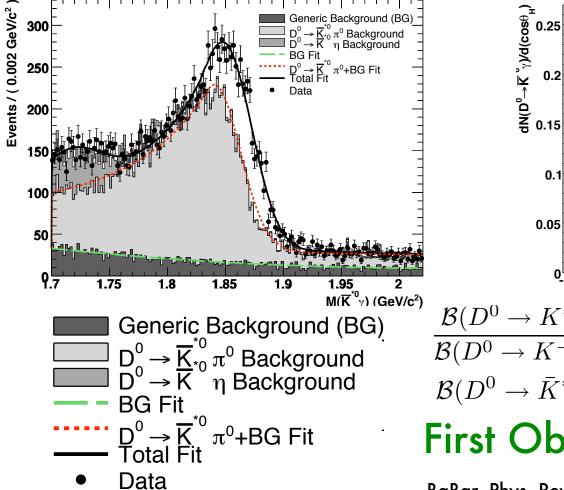
• Rich laboratory for QCD

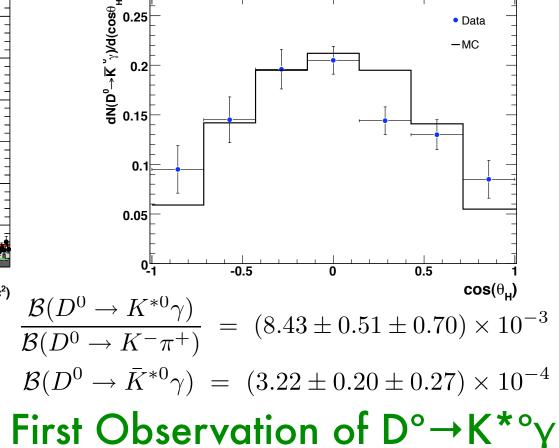
diagrams from BaBar, Phys. Rev. D 78, 071101 (2008)

Radiative Charm Decays

• Status until recently:

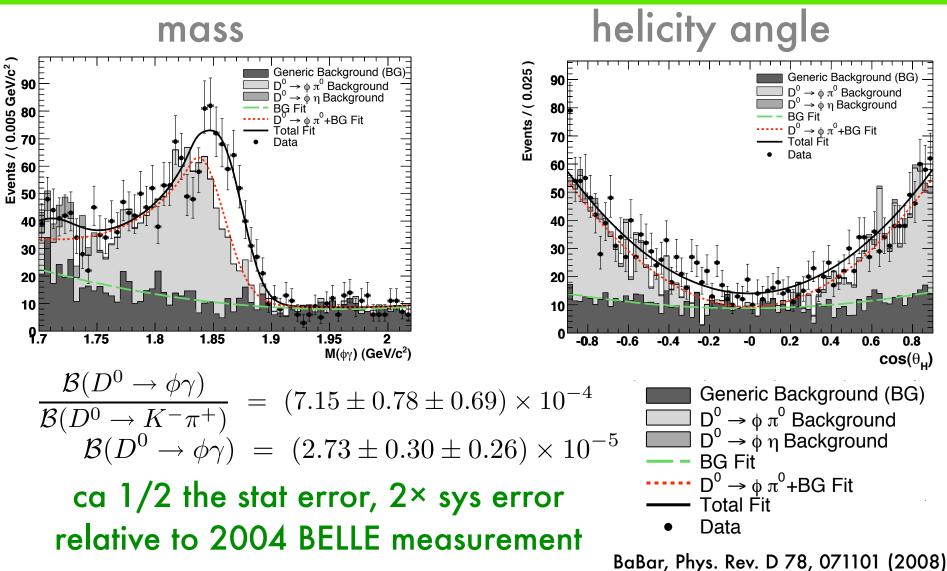
Mode	Experimental	Theoretical[3, 4, 5, 6, 7, 8, §
	B.F. $(\times 10^{-5})$	B.F. $(\times 10^{-5})$
$D^0 o \phi \gamma$	$(2.43^{+0.66}_{-0.57}(stat.)^{+0.12}_{-0.14}(sys.)$ [10]	0.1 - 3.4
$D^0 o ar{K}^{*0} \gamma$	$< 76 \ (90\% \ { m C.L.}) \ [11]$	7-80
$D^0 o ho^0 \gamma$	$< 24 \ (90\% \text{ C.L.}) \ [11]$	0.1 - 6.3
$D^0 o \omega \gamma$	< 24 (90% C.L.) [11]	0.1 - 0.9


This table: BaBar, Phys. Rev. D 78, 071101 (2008)


- [3] B. Bajc, S. Fajfer, and R. J. Oakes, Phys. Rev. D51, 2230 (1995).
- [4] B. Bajc, S. Fajfer, and R. J. Oakes, Phys. Rev. D54, 5883 (1996).
- [5] G. Burdman, E. Golowich, J. L. Hewett, and S. Pakvasa, Phys. Rev. D52, 6383 (1995).
- [6] H.-Y. Cheng et al., Phys. Rev. D51, 1199 (1995).
- [7] S. Fajfer, A. Prapotnik, S. Prelovsek, P. Singer, and J. Zupan, Nucl. Phys. Proc. Suppl. 115, 93 (2003).
- [8] S. Fajfer and P. Singer, Phys. Rev. D56, 4302 (1997).
- [9] S. Fajfer, S. Prelovsek, and P. Singer, Eur. Phys. J. C6, 471 (1999).
- [10] K. Abe et al., Phys. Rev. Lett. 92, 101803 (2004), the published result has been rescaled using 07 PDG [15].
- [11] D. M. Asner et al., Phys. Rev. D58, 092001 (1998)
- [15] W.-M. Yao et al. (Particle Data Group), J. Phys. G33, 1 (2006), and 2007 partial update for the 2008 edition

$D^{\circ} \rightarrow K^{*}^{\circ}\gamma$ at BaBar

mass


helicity angle

BaBar, Phys. Rev. D 78, 071101 (2008)

$D^{\circ} \rightarrow \phi \gamma$ at BaBar

VMD, $D^{\circ} \rightarrow V\gamma$ and $D^{\circ} \rightarrow V\rho^{\circ}$

D

- Vector-Meson-Dominance approach: $A(D^{\circ} \rightarrow M\gamma) = (e/f_{\rho}) A(D \rightarrow M\rho^{\circ}_{offshell})^{[1]}$
- Predicts

$$\frac{\mathcal{B}(D^0 \to \phi \gamma)}{\mathcal{B}(D^0 \to \bar{K}^{*0} \gamma)} = \frac{\mathcal{B}(D^0 \to \phi \rho^0)}{\mathcal{B}(D^0 \to \bar{K}^{*0} \rho^0)}$$

• Find
$$\frac{\mathcal{B}(D^0 \to \phi \gamma)}{\mathcal{B}(D^0 \to \bar{K}^{*0} \gamma)} = (6.27 \pm 0.71 \pm 0.79) \times 10^{-2}$$
 BaBar 08
 $\frac{\mathcal{B}(D^0 \to \phi \rho^0)}{\mathcal{B}(D^0 \to \bar{K}^{*0} \rho^0)} = (6.7 \pm 1.6) \times 10^{-2}$ PDG 07

[1] G. Burdman, E. Golowich, J. L. Hewett, and S. Pakvasa, Phys. Rev., 6383 (1995)

Jonas Rademacker for CLEO-c: D/Ds Branching Fractions 21 May 2009, non-leptonic decays session, Charm 2009, Leimen

Μ

VMD, $D^{\circ} \rightarrow V\gamma$ and $D^{\circ} \rightarrow V\rho^{\circ}$

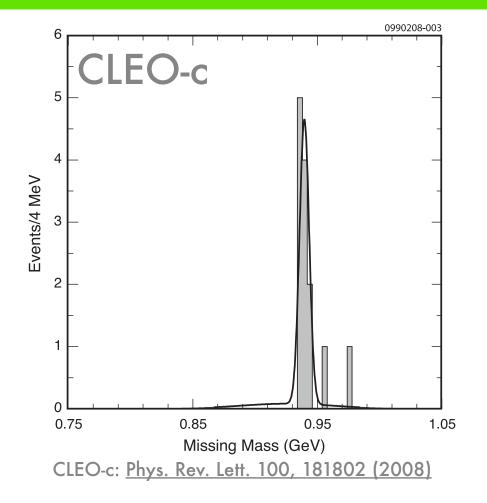
• VMD: $A(D^{\circ} \rightarrow M\gamma) \approx (e/f_{\rho}) A(D \rightarrow M\rho^{\circ})$ ^[1]

• Using $(e/f_{\rho}) = 0.06$ ^[2], expect: $\mathcal{B}(D^{0} \rightarrow V\gamma) \approx 0.0036 \cdot \mathcal{B}(D^{0} \rightarrow V\rho^{0})$

• Find $\mathcal{B}(D^0 \to \bar{K}^{*0}\gamma) = (0.021 \pm 0.005) \mathcal{B}(D^0 \to \bar{K}^{*0}\rho^0)$ $\mathcal{B}(D^0 \to \phi\gamma) = (0.020 \pm 0.003) \mathcal{B}(D^0 \to \phi\rho^0)$

i.e. $\mathcal{B}(D^{o} \rightarrow V\gamma) \approx \mathbf{6} (e/f_{\rho})^{2} \mathcal{B}(D^{o} \rightarrow V\rho^{o})$

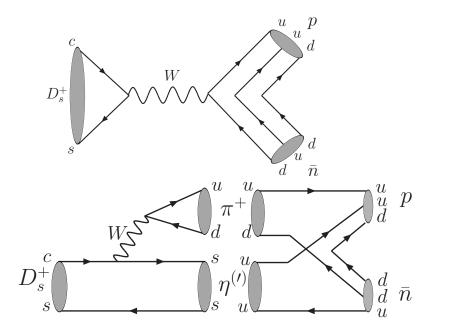
• Suggests other processes might be important.


[1] G. Burdman, E. Golowich, J. L. Hewett, and S. Pakvasa, Phys. Rev., 6383 (1995) [2] E. Golowich and S. Pakvasa, Phys. Rev. D 51, 1215 - 1223 (1995)

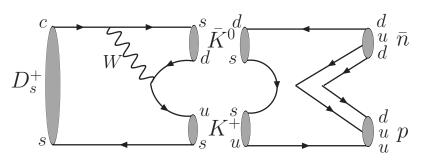
Jonas Rademacker for CLEO-c: D/Ds Branching Fractions 21 May 2009, non-leptonic decays session, Charm 2009, Leimen

Μ

(EN


First Observation of D_s⁺→pn

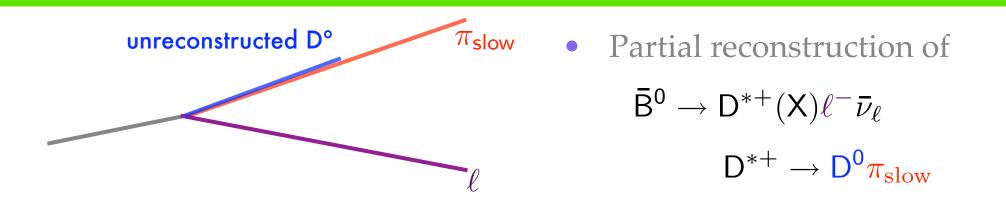
- Only baryonic state kinematically accessible to D° D⁺ D_s⁺
- Virtually backgroundfree reconstruction at CLEO-c
- First observation of meson → 2 baryons plus nothing else.


 $\mathcal{B}(D_s^+ \to p\bar{n}) = (1.30 \pm 0.36^{+0.12}_{-0.16}) \times 10^{-3}$

Theory of $D_s^+ \rightarrow p\bar{n}$

• Short Distance:

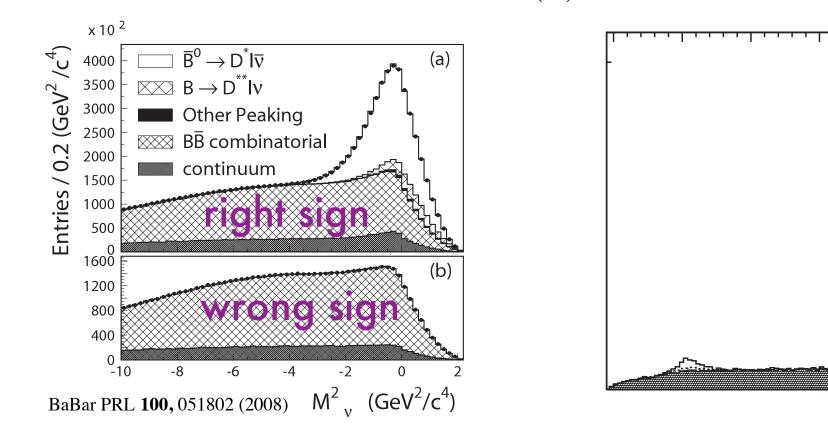
 $\mathcal{B}(D_s^+ \to p\bar{n})_{\rm SD} = (0.4^{+1.1}_{-0.3}) \times 10^{-6}$


- Long Distance $\mathcal{B}(D_s^+ \to p\bar{n}) \approx \left(0.8^{+2.4}_{-0.6}\right) \times 10^{-3}$
- Measured $\mathcal{B}(D_s^+ \to p\bar{n}) = (1.30 \pm 0.36^{+0.12}_{-0.16}) \times 10^{-3}$

Chen, Cheng, Hsiao: Phys.Lett.B663:326-329,2008

Absolute BF

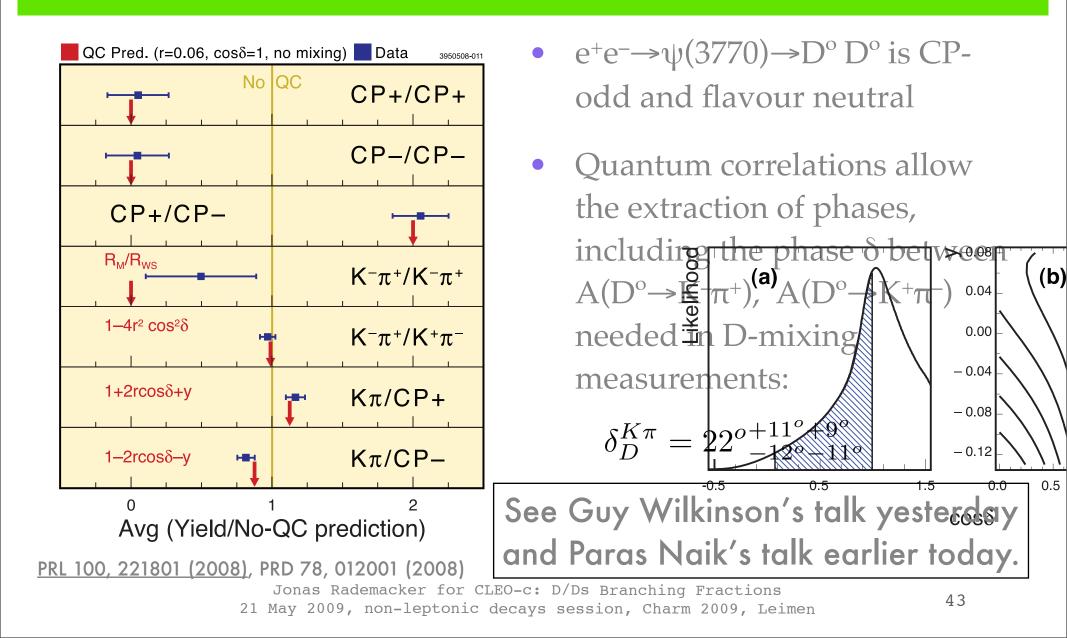
- Important normalising modes: $D^0 \rightarrow K^- \pi^+$
 - $D^+
 ightarrow K^- \pi^+ \pi^+$ $D^+_s
 ightarrow K^- K^+ \pi^+$ (historically " $\phi \pi^+$ ")
- Methods need to know there is a D before reconstructing it
 - BaBar: partial reconstruction of $D^* \rightarrow D\pi$, using only the π (and the rest of the event, but not the D)
 - BELLE: $e^+e^- \rightarrow D_s^{*+}D_{s1}^- (\rightarrow \overline{D}^{*0}K^-)$
 - CLEO-c: $e^+e^- \rightarrow \psi \rightarrow \overline{D} D$


BaBar absolute BF $D^{\circ} \rightarrow K^{-}\pi^{+}$

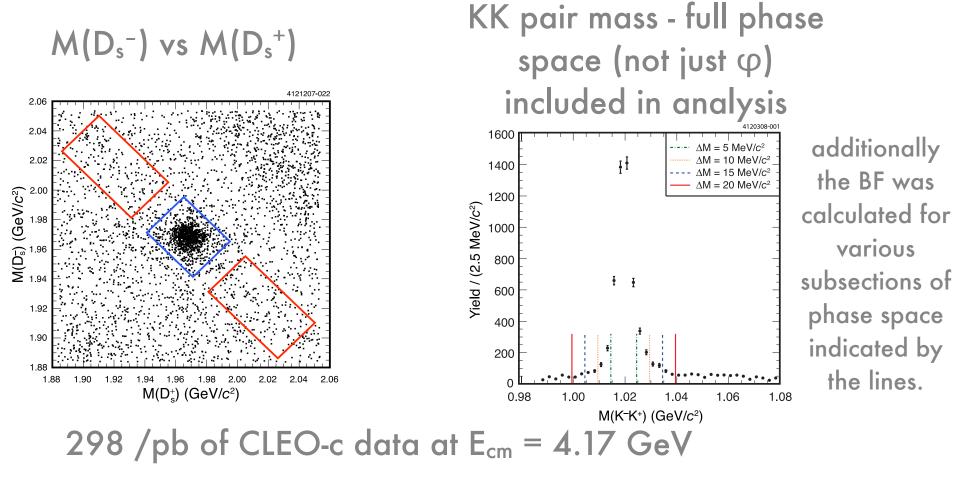
- Because of near-zero momentum of π_{slow} in D* restframe, D° direction $\approx \pi_{slow}$ direction.
- Together with beam constraints, enough information to reconstruct full decay w/o reconstructing D^o
- This inclusive reconstruction provides normalisation.

BaBar absolute BF $D^{\circ} \rightarrow K^{-}\pi^{+}$

Reconstructed v mass in $\bar{B}^0 \to D^{*+}(X) \ell^- \bar{\nu}_{\ell}$.



• BR(D° \rightarrow K⁻ π^+) = (4.007 ± 0.037 ± 0.072)%


Absolute BF at CLEO-c

- CLEO-c produces DD pairs:
 - $e^+e^- \rightarrow \psi(3770) \rightarrow D^+ D^-$
 - $e^+e^- \rightarrow \psi(3770) \rightarrow D^\circ \overline{D}^\circ$
 - $e^+e^- \rightarrow \psi(4170) \rightarrow D_S^{+*} D_S^-$
- Reconstruct both D mesons. One D (in decays to various high-yield modes) normalises the BF of the other to a specific final state.
- Some interesting and insightful complications arise for $\psi(3770) \rightarrow D^{\circ} \overline{D^{\circ}}$...

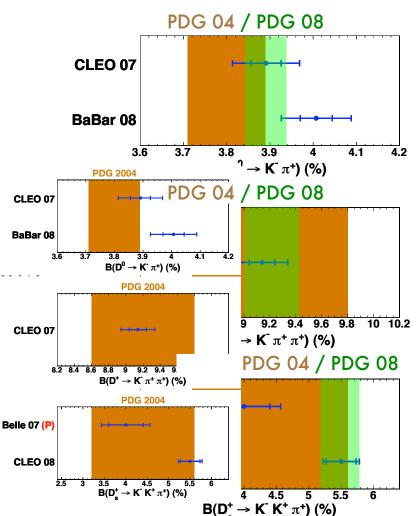
Exploiting Quantum Correlations at CLEO-c

Absolute Ds→KKπ BF at CLEO-c

 $B(Ds \rightarrow K^- K^+ \pi^+) = (5.50 \pm 0.23 \pm 0.16)\%$

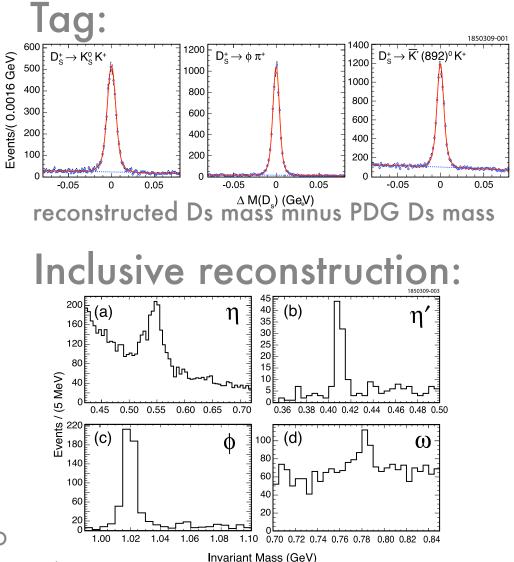
Phys.Rev.Lett.100:161804,2008 (arxiv)

More absolute Ds BF at CLEO-c


		0 +	PDG 2007 fit, all errors
Mode	This result \mathcal{B} (%)	K ⁰ _S K ⁺	PDG 2007 fit, BR error only
$\overline{K^0_S K^+}$	$1.49 \pm 0.07 \pm 0.05$	Κ⁺ Κ ⁻ π ⁺	CLEO-c, 298 pb ⁻¹
$\stackrel{ m S^{-}}{K^{-}K^{+}\pi^{+}}\pi^{+} \ K^{-}K^{+}\pi^{+}\pi^{0}$	$5.50 \pm 0.23 \pm 0.16$ $5.65 \pm 0.29 \pm 0.40$	K ⁰ _S K ⁻ π ⁺ π ⁺	
$K^0_S K^- \pi^+ \pi^+ \ \pi^+ \pi^-$	$1.64 \pm 0.10 \pm 0.07$ $1.11 \pm 0.07 \pm 0.04$	π + π+ π ⁻	
$\pi^+\eta$	$1.11 \pm 0.07 \pm 0.04$ $1.58 \pm 0.11 \pm 0.18$	π * η	
$\pi^+\eta^\prime \ K^+\pi^+\pi^-$	$3.77 \pm 0.25 \pm 0.30$ $0.69 \pm 0.05 \pm 0.03$	π + η'	
		Κ⁺ π⁺ π⁻	
		Ľ	0.6 0.8 1 1.2 1.4 1.6 1.8 2 BF/PDG 2007 fit

Phys.Rev.Lett.100:161804,2008 (arxiv)

Absolute BF summary

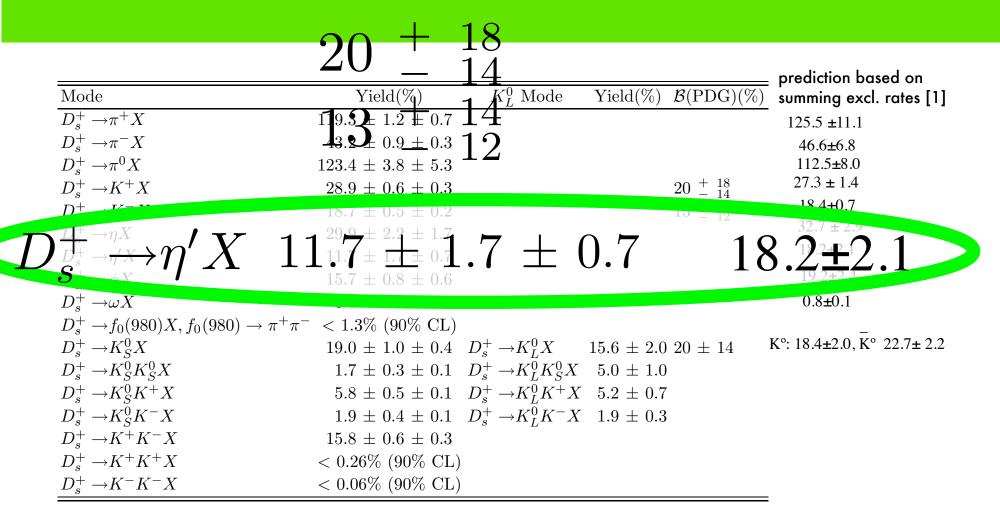

- Progress in key reference modes
- Important for Ds: replace Ds $\rightarrow \phi \pi$ (wit _{cle} uncertainties in ^{Bab} interference effects (.... with Ds \rightarrow KK π

 $\begin{array}{l} \mbox{Belle 07: hep-ex/0701053 (Prel.) } [552 \ fb^{-1}] \\ \mbox{CLEO 07: PRD 76, 112001 } [281 \ pb^{-1}] \\ \mbox{BaBar 08: PRL 100, 051802 } [210 \ fb^{-1}] \\ \mbox{CLEO 08: PRL 100, 161804 } [298 \ pb^{-1}] \end{array}$

Inclusive Ds BF

- $e^+e^- \rightarrow \psi(4170) \rightarrow D_S^{+*} D_S^-$
- Fully reconstruct one Ds as tag
- Reconstruction of desired decay product on other side gives absolute, inclusive BF.

CLEO: arXiv:0904.2417 [hep-ex], submitted to PRD


Inclusive Ds BF Results

		0	(0.1)		prediction based on
Mode	$\operatorname{Yield}(\%)$	K_L^0 Mode	Yield(%)	$\mathcal{B}(PDG)(\%)$	summing excl. rates [1]
$D_s^+ \to \pi^+ X$	$119.3 \pm 1.2 \pm 0.7$				125.5 ±11.1
$D_s^+ \to \pi^- X$	$43.2 \pm 0.9 \pm 0.3$				46.6 ± 6.8
$D_s^+ \rightarrow \pi^0 X$	$123.4 \pm 3.8 \pm 5.3$				112.5 ± 8.0
$D_s^+ \to K^+ X$	$28.9\pm0.6\pm0.3$			$20 {}^{+}_{-} {}^{18}_{14}$	27.3 ± 1.4
$D_s^+ \to K^- X$	$18.7 \pm 0.5 \pm 0.2$			$13 + \frac{14}{12}$	18.4 ± 0.7
$D_s^+ \to \eta X$	$29.9 \pm 2.2 \pm 1.7$			12	32.7 ± 2.9
$D_s^+ \to \eta' X$	$11.7 \pm 1.7 \pm 0.7$				18.2 ± 2.1
$D_s^+ \to \phi X$	$15.7 \pm 0.8 \pm 0.6$				19.2 ± 2.4
$D_s^+ \to \omega X$	$6.1 \pm 1.4 \pm 0.3$				0.8±0.1
$D_s^+ \to f_0(980)X, f_0(980) \to \pi^+\pi$	$^-$ < 1.3% (90% CL)				_
$D_s^+ \to K_S^0 X$	$19.0 \pm 1.0 \pm 0.4$ Å	$D_s^+ \to K_L^0 X$	15.6 ± 2.0	20 ± 14	K°: 18.4±2.0, K° 22.7± 2.2
$D_s^+ \rightarrow K_S^0 K_S^0 X$	$1.7 \pm 0.3 \pm 0.1$ Å	$D_s^+ \to K_L^0 K_S^0 X$	5.0 ± 1.0		
$D_s^+ \rightarrow K_S^0 K^+ X$	$5.8 \pm 0.5 \pm 0.1$ Å	$D_s^+ \to K_L^0 K^+ X$	5.2 ± 0.7		
$D_s^+ \to K_S^0 K^- X$	$1.9 \pm 0.4 \pm 0.1$ Å	$D_s^+ \to K_L^0 K^- X$	1.9 ± 0.3		
$D_s^+ \rightarrow K^+ K^- X$	$15.8 \pm 0.6 \pm 0.3$				
$D_s^+ \to K^+ K^+ X$	< 0.26% (90% CL)				
$D_s^+ \to K^- K^- X$	$< 0.06\%~(90\%~{\rm CL})$				

[1] Prediction: <u>Gronau, Rosner</u>, arXiv:0903.2287, Mar 2009, Submitted to Phys.Rev.D CLEO result: <u>arXiv:0904.2417 [hep-ex]</u>, submitted to PRD Jonas Rademacker for CLEO-c: D/Ds Branching Fractions

21 May 2009, non-leptonic decays session, Charm 2009, Leimen

Inclusive Ds BF Results

[] Prediction: <u>Gronau</u>, <u>Rosner</u>, <u>a</u>(X):<u>0903.2287</u>, <u>Mar</u> 2009, <u>Submitted to Phys.Rev.D</u> CLEO result (2009): <u>arXiv:0904.2417 [hep-ex]</u>, <u>submitted to PRD</u> Jonas Rademacker for CLEO-c: D/Ds Branching Fractions 2 Mar 2009, non-leptonic decays session, Charm 2009, Leimen

13 + 1413 + 14Inclusive Ds BF Results

Mode	Yield(%)	K_L^0 Mode	Yield(%)	$\mathcal{B}(PDG)(\%)$	prediction based on summing excl. rates [1]
$D_s^+ \to \pi^+ X$	$119.3 \pm 1.2 \pm 0.7$				125.5 ±11.1
$D_s^+ \to \pi^- X$	$43.2 \pm 0.9 \pm 0.3$				46.6±6.8
$D_s^+ \to \pi^0 X$	$123.4 \pm 3.8 \pm 5.3$				112.5 ± 8.0
$D_s^+ \to K^+ X$	$28.9\pm0.6\pm0.3$			$20 \ ^{+}_{-} \ ^{18}_{14}$	27.3 ± 1.4
$D_s^+ \to K^- X$	$18.7 \pm 0.5 \pm 0.2$			$13 \ ^{+}_{-} \ ^{14}_{12}$	18.4 ± 0.7
$D_s^+ \to \eta X$	$29.9 \pm 2.2 \pm 1.7$				32.7 ± 2.9
$D_s^+ \rightarrow n' X$	11.1 1 1.1 1 V.I				18.2 ± 2.1
$D^+ \rightarrow f_0(980)X, f_0(980) \rightarrow$	$6.1^{15.7 \pm 0.8}_{6.1 \pm 1.4} 10.4^{0.6}_{0.4}$	$\pm 0.$	3	0.	8±0.1
$D_s^+ \to K \check{S} \Lambda$		$\rightarrow + $	180100		. 10.т±2.0, К° 22.7± 2.2
$D_s^+ \to K_S^0 K_S^0 X$	$1.7 \pm 0.3 \pm 0.1$ <i>L</i>	с ц с			
$D_s^+ \to K_S^0 K^+ X$	$5.8 \pm 0.5 \pm 0.1$ L	0 1			
$D_s^+ \to K_S^0 K^- X$	$1.9 \pm 0.4 \pm 0.1$ L	$D_s^+ \to K_L^0 K^- X$	1.9 ± 0.3		
$D_s^+ \to K^+ K^- X$	$15.8 \pm 0.6 \pm 0.3$				
$ \begin{array}{c} D_s^+ & K^+ K \\ D_s^+ & -K \\ \end{array} $	$= \frac{0.26\% (90\% \text{ CL})}{-10.06\% (90\% \text{ CL})}$				

LIPrediction: Gonau, Rosner, arXiv:0903.2287, Mar 2009, Submitted to Phys.Rev.D CLEO result (2009): arXiv:0904.2417 [hep-ex], submitted to PRD Jonas Rademacker for CLEO-c: D/Ds Branching Fractions 21 May 2009, non-leptonic decays session, Charm 2009, Leimen

Direct CP Violation

- CP violation in charm provides one of the most powerful tests of the SM. See earlier sessions today
- Main focus there: time-dependent studies
- Here: compare time-integrated decay rates:

$$A_{CP} = \frac{\Gamma(\mathsf{D} \to \mathsf{f}) - \Gamma(\bar{\mathsf{D}} \to \bar{\mathsf{f}})}{\Gamma(\mathsf{D} \to \mathsf{f}) + \Gamma(\bar{\mathsf{D}} \to \bar{\mathsf{f}})}$$

• Not hopeless, but in 2-body modes "probably need to aim for accuracy of 10⁻³" (Ikaros Bigi this morning).

Direct CPV in D°, D+

- Plenty of results from BaBar, BELLE, CDF, CLEO, E791, FOCUS, averaged by HFAG
- Table shows averages for those results that received updates in 2007 or 2008.
- Plenty more modes
- Reaching per-mil precision.

	Mode	A _{CP} (%) Charm09	A _{CP} (%) Charm07
	K+K-	-0.16±0.23	1.36±1.2
	$\pi^+\pi^-$	0.22 ± 0.37	1.27±1.25
D ^o	$\pi^+\pi^-\pi^o$	-0.23±0.42	1.0±9.0
	$K^-\pi^+\pi^0$	0.16±0.89	3.1±8.6
	$K^-K^+\pi^o$	0.16 ± 0.89	-
	$K^-K^+\pi^+$	0.39 ± 0.61	0.7±0.8
D+	$K_S \pi^+$	-0.86 ± 0.90	-1.6±1.7
	$K_S \pi^+ \pi^o$	$0.3\pm0.9\pm0.3$	_
	$K^-\pi^+\pi^+\pi^o$	$1.0\pm0.9\pm0.9$	-

Direct CPV in Ds

- CLEO-c's Ds data allowed for the first time a precise test of direct CP in the Ds system
- Plenty of modes, all results new since
 Charm 2007
- Many results at the few % level.

Mode	A _{CP} (%)
$\pi^+\eta$	$-8.2 \pm 5.2 \pm 0.8$
$\pi^+\eta'$	$-5.5 \pm 3.7 \pm 1.2$
$K_S \pi^+$	27 ± 11
$K_S\pi^\circ$	2 ± 29
K+η	-20 ± 18
$K^+\eta'$	-17 ± 37
K+Ks	$4.9\pm2.1\pm0.9$
$\pi^+\pi^-\pi^+$	$2.0\pm4.6\pm0.7$
$K^+\pi^+\pi^-$	$11.2 \pm 7.0 \pm 0.9$
$K_S K^- \pi^+ \pi^+$	$-0.7 \pm 3.6 \pm 1.1$
$K^{+}K^{-}\pi^{+}\pi^{0}$	$-5.9\pm4.2\pm1.2$

Prospects for direct CPV

- Example: $D^{\circ} \rightarrow K^{+}\overline{K}^{-}$
 - BaBar 2008: $+0.0000 \pm 0.0034 \pm 0.0013$
 - BELLE 2008: -0.0043 ± 0.0030 ± 0.0011
 - World average (HFAG): $+0.0022 \pm 0.0037$
- CDF has obtained its result of $+0.020 \pm 0.012 \pm 0.006$ with only 2% of its current data set. CDF could beat world stat precision now.
- LHCb, due to start this year, expects stat precision of 0.004% in 10/fb (ca 5 years, using charm from B decays, including prompt charm will improve this further).

Summary

- Lots of new precise D branching fractions inclusive, exclusive, relative and absolute. A lot of new Ds results.
- SU(3)_F topological approach describes data reasonably well except, it seems, when $\eta^{(\prime)}$ or ω are involved. Why?
- $D^{\circ} \rightarrow K_{S}\pi^{\circ} \neq D^{\circ} \rightarrow K_{L}\pi^{\circ}$, asymmetry as expected by U-spin.
- Do we understand $D^{\circ} \rightarrow V\gamma$, $D^{\circ} \rightarrow V\rho^{\circ}$ (ratio too large)?
- New modes incl. $D^{\circ} \rightarrow \phi \eta$, $D^{\circ} \rightarrow \omega \eta$, with surprising BF's, and the first meson $\rightarrow 2$ baryon decay: $D_{s}^{+} \rightarrow p\overline{n}$
- Increase in direct CPV sensitivity from percent to permil since Charm 2007

Jonas Rademacker for CLEO-c: D/Ds Branching Fractions 21 May 2009, non-leptonic decays session, Charm 2009, Leimen

56

Inclusive BF prediction from exclusive rates

Gronau, Rosner, "Ds Inclusive Decays" arXiv:0903.2287, Mar 2009, Submitted to Phys.Rev.D

VII. CONCLUSIONS

We have calculated the inclusive branching fractions of D_s mesons to several species, using the fact that the observed branching fractions, together with modest assumptions about unseen charge states, account for all the D_s decays to an accuracy of about 5%. Calculations of branching

While many aspects of this analysis bear some resemblance to an itemized tax return, several notable features have emerged.

Summary and Future Plans

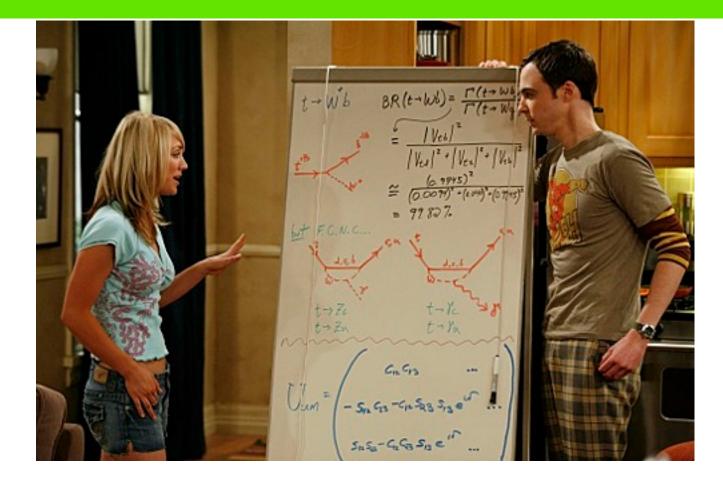
Mode	Ref [1] x10-3	Ref [2] x 10 ⁻³	Ref [3] x 10 ⁻³	Signal Count	BaBar x 10 ⁻³
D0→ωη		1.3 and 1.0	1.4 ± 0.09 and 1.27 ± 0.09	4450 ± 103	2.21 ± 0.08 ± 0.22
D0→K*η		0.03 and 0.041	0.038 ± 0.004 and 0.037 ± 0.004	177 ± 37	0.048 ± 0.01 ± 0.004
D0→φη	0.14 ± 0.04 (Belle)	0.35 and 0.34	0.93 ± 0.09 and 1.4 ± 0.1	513 ± 26	0.21 ± 0.01 ± 0.02

SUMMARY

- $\phi\eta$ measurement higher than Belle but within 2σ (both inconsistent with theory)
- ωη higher than predicted
- K^{*0} within 1σ of theoretical predictions

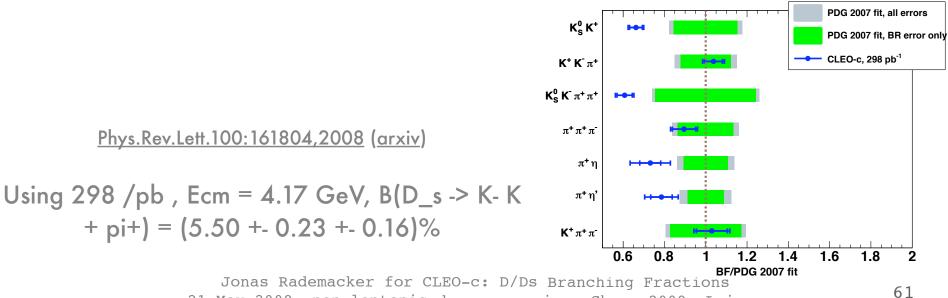
FUTURE WORK

- Isolating $K^{\ast 0}$ and ϕ within signal region
- Using $D^0 \rightarrow K^- \pi^+$ as the normalization mode instead of CLEO result
 - Internally consistent
 - Will reduce systematic errors

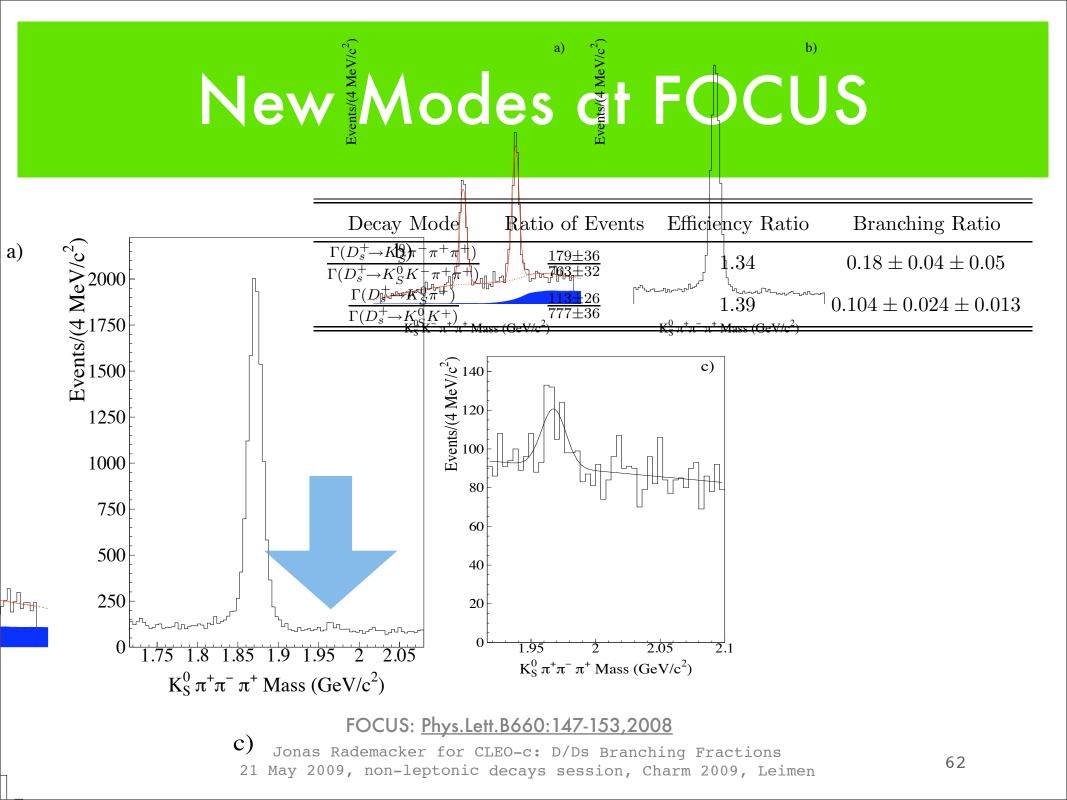

12

slide by: Caitlin Malone on behalf of the BaBar Collaboration at APS April Meeting 2009 Jonas Rademacker for CLEO-c: D/Ds Branching Fractions 58

Systematic	$D^0 \rightarrow (K^+ K^-)_{\phi} \eta \ (\%)$	$D^0 \to \omega \eta \ (\%)$	$D^0 \to (K^+ \pi^-)_{K^{*0}} \eta \ (\%)$
Tracking	0.40	0.40	0.40
Particle ID	2.1	0.87	1.6
$\pi^0 + \eta$	3.2	6.2	3.2
Background PDF	0.7	0.5	1.4
Signal PDF	2.0	3.0	3.0
Selection Criteria	3.0	3.0	3.0
Integrated luminosity	1.0	1.0	1.0
Subtotal	5.4	7.7	5.8
$e^+e^- \rightarrow D^*$ X-section [10]	5.7	5.7	5.7
P_{D^*} correction	2.0	2.0	2.0
Total	8.1	9.8	8.4


slide by: Caitlin Malone on behalf of the BaBar Collaboration at APS April Meeting 2009

21 May 2009, non-leptonic decays session, Charm 2009, Leimen



Absolute Ds BR

Mode	This result \mathcal{B} (%)	PDG 2007 fit \mathcal{B} (%)	$\mathcal{B}/\mathcal{B}(K^-K^+\pi^+)$	\mathcal{A}_{CP} (%)
$\overline{K^0_S K^+}$	$1.49 \pm 0.07 \pm 0.05$	2.2 ± 0.4	$0.270 \pm 0.009 \pm 0.008$	$+4.9 \pm 2.1 \pm 0.9$
$K^{-}K^{+}\pi^{+}$	$5.50 \pm 0.23 \pm 0.16$	5.3 ± 0.8	1	$+0.3 \pm 1.1 \pm 0.8$
$K^-K^+\pi^+\pi^0$	$5.65 \pm 0.29 \pm 0.40$	•••	$1.03 \pm 0.05 \pm 0.08$	$-5.9 \pm 4.2 \pm 1.2$
$K^0_S K^- \pi^+ \pi^+$	$1.64 \pm 0.10 \pm 0.07$	2.7 ± 0.7	$0.298 \pm 0.014 \pm 0.011$	$-0.7 \pm 3.6 \pm 1.1$
$\pi^+\pi^+\pi^-$	$1.11 \pm 0.07 \pm 0.04$	1.24 ± 0.20	$0.202 \pm 0.011 \pm 0.009$	$+2.0 \pm 4.6 \pm 0.7$
$\pi^+\eta$	$1.58 \pm 0.11 \pm 0.18$	2.16 ± 0.30	$0.288 \pm 0.018 \pm 0.033$	$-8.2 \pm 5.2 \pm 0.8$
$\pi^+ \eta^\prime$	$3.77 \pm 0.25 \pm 0.30$	4.8 ± 0.6	$0.69 \pm 0.04 \pm 0.06$	$-5.5 \pm 3.7 \pm 1.2$
$K^+ \pi^+ \pi^-$	$0.69 \pm 0.05 \pm 0.03$	0.67 ± 0.13	$0.125 \pm 0.009 \pm 0.005$	$+11.2 \pm 7.0 \pm 0.9$

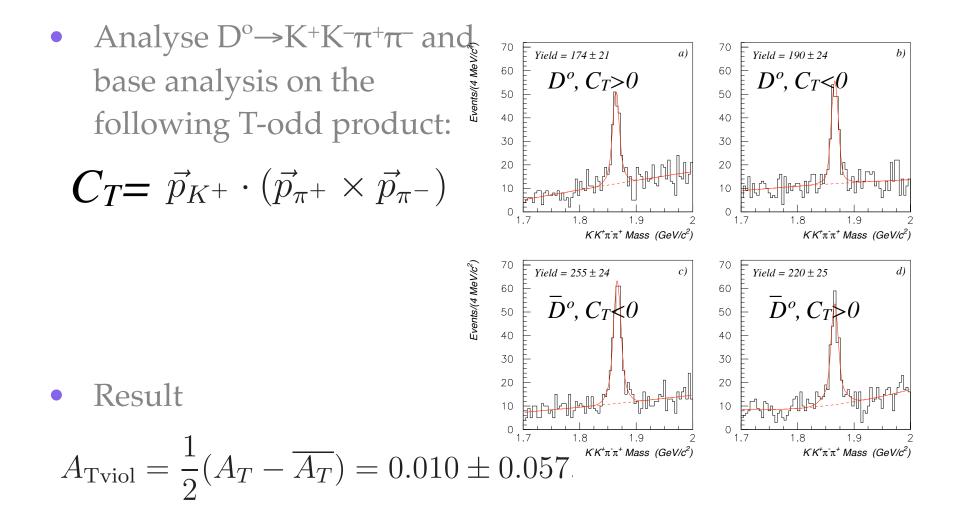
21 May 2009, non-leptonic decays session, Charm 2009, Leimen

A_{CP} in $D^{\circ} \rightarrow \pi^{+}\pi^{-}$

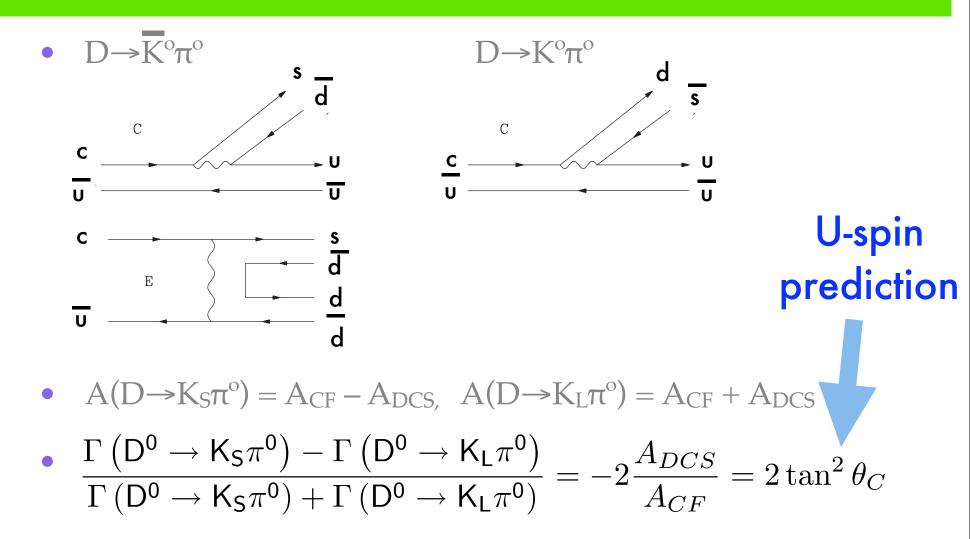
- $[\Gamma(D^{\circ} \rightarrow \pi^{+}\pi^{-}) \Gamma(\overline{D}^{\circ} \rightarrow \pi^{+}\pi^{-})] / [\Gamma(D^{\circ} \rightarrow \pi^{+}\pi^{-}) + \Gamma(D^{\circ} \rightarrow \pi^{+}\pi^{-})]$
 - BaBar 2008: $-0.0024 \pm 0.0052 \pm 0.0022$
 - BELLE 2008: +0.0043 ± 0.0052 ± 0.0012
 - World average (HFAG): +0.0022 ± 0.0037
- Hadron machines: CDF has obtained its result of $\pm 0.010 \pm 0.013 \pm 0.006$ with only 2% of its current data set.

T-odd moments

- Form triple vector products that are odd under T (v could be a momentum or spin):
 - $\vec{v_1} \cdot (\vec{v_2} \times \vec{v_3})$
- Form the asymmetry of these triple products

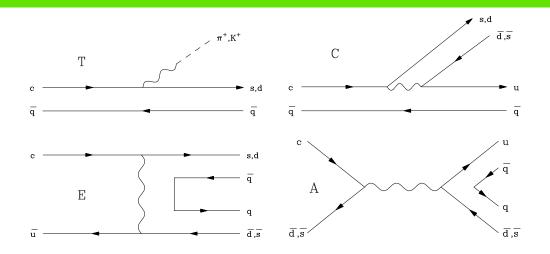

$$A_T \equiv \frac{\Gamma(\vec{v_1} \cdot (\vec{v_2} \times \vec{v_3}) > 0) - \Gamma(\vec{v_1} \cdot (\vec{v_2} \times \vec{v_3}) < 0)}{\Gamma(\vec{v_1} \cdot (\vec{v_2} \times \vec{v_3}) > 0) + \Gamma(\vec{v_1} \cdot (\vec{v_2} \times \vec{v_3}) < 0)}$$

in this expression, it turns out that strong phases can produce a non-zero A_T in the absence of T violation.


• Form the difference of CP-conjugate A_T asymmetries truly T violating: $A_{\text{Tviol}} \equiv \frac{1}{2}(A_T - \overline{A_T})$

T-odd moments at FOCUS

Theory: I.I. Bigi, in Proceedings of KAON2001 (hep-ph/0107102) Experiement: FOCUS, Phys.Lett.B622:239-248,2005



U-spin symmetry and $D \rightarrow K^0 \pi^0$, $K^0 \pi^0$ interference

I. Bigi and H. Yamamoto, Physics Letters 349 (1995) 363-366 Jonas Rademacker for CLEO-c: D/Ds Branching Fractions 21 May 2009, non-leptonic decays session, Charm 2009, Leimen

CF decay rates in terms of topology amplitudes.

uū: $(1/\sqrt{2})\pi^{0} + (1/\sqrt{6})\eta_{0} + (1/\sqrt{3})\chi^{0}$ d \bar{d} : $-(1/\sqrt{2})\pi^{0} + (1/\sqrt{6})\eta_{0} + (1/\sqrt{3})\chi^{0}$ s \bar{s} : $-(\sqrt{2}/\sqrt{3})\eta_{0} + (1/\sqrt{3})\chi^{0}$ u \bar{d} : π^{+} , $d\bar{u}$: π^{-} u \bar{s} : K^{+} , $d\bar{s}$: K^{0} , s \bar{d} : \bar{K}^{0} , s \bar{u} : K^{-}

Meson	Decay	Rep.
	mode	
D^0	$K^{-}\pi^{+}$	T + E
	$\overline{K}^0 \pi^0$	$(C-E)/\sqrt{2}$
	$\overline{K}^0\eta$	$C/\sqrt{3}$
	$\overline{K}^0 \eta'$	$-(C+3E)/\sqrt{6}$
D^+	$\overline{K}^0 \pi^+$	C + T
D_s^+	$\overline{K}^0 K^+$	C + A
	$\pi^+\eta$	$(T-2A)/\sqrt{3}$
	$\pi^+\eta'$	$2(T+A)/\sqrt{6}$

virtual rho and phi mesons. We shall employ the observation made in [35] that the rho-gamma vertex seems to be unaffected by the extrapolation whereas the phigamma vertex is reduced by a factor of $\eta_{\phi} \simeq \sqrt{2}$. In the following, we will consider a number of examples for

Coefficients in radiative decays

\overline{V}	$\Gamma_{V \to e^+ e^-}$	m_v	f_V	e/f_V
$\overline{ ho^0}$	$6.77 imes10^{-6}$	0.768	5.03	0.06
ω^0	$6.03 imes10^{-7}$	0.782	17.1	0.018
ϕ^0	$1.37 imes 10^{-6}$	1.019	12.9	0.024
Ψ	5.36×10^{-6}	3.097	11.3	0.027
Ψ'	$2.14 imes10^{-6}$	3.686	19.6	0.015
Ψ''	0.26×10^{-6}	3.770	56.9	0.005

TABLE I. The coefficients f_V .

E. Golowich and S. Pakvasa, Phys. Rev. D 51, 1215 - 1223 (1995)

Definition of fv

$$\langle 0|V_{\mu}^{a}|V^{b}(\mathbf{q},\lambda)\rangle = \delta^{ab} \frac{m_{V}^{2}}{f_{V}} \epsilon_{\mu}^{*}(\mathbf{q},\lambda)$$

$$\equiv \delta^{ab} g_{V} \epsilon_{\mu}^{*}(\mathbf{q},\lambda) .$$

$$(37)$$

Note that we define two equivalent parametrizations g_V (with units of GeV^2) and f_V (dimensionless), for the vector decay constant. We have found that employing g_V

G. Burdman, E. Golowich, J. L. Hewett, and S. Pakvasa, Phys. Rev., 6383 (1995)