

D Mixing at BaBar

Concetta Cartaro

University & INFN Trieste

On Behalf of BaBar Collaboration

Charm 2009 Leimen, May 20th – 22nd

Outline

- D Mixing
 - Introduction and CPV
 - SM predictions
- Babar
 - Detector and datasets
 - Reconstruction techniques
- Current results and analyses
 - \rightarrow D \rightarrow K π
 - D → Kππ
 - D → KK,ππ

Introduction to D-Mixing

The D⁰ and D⁰ mesons are produced as flavor eigenstates but evolve as mixtures of the effective hamiltonian mass eigenstates D₁ and D₂:

$$i\frac{\partial}{\partial t} \begin{pmatrix} D^0(t) \\ \overline{D}^0(t) \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2} \mathbf{\Gamma} \right) \begin{pmatrix} D^0(t) \\ \overline{D}^0(t) \end{pmatrix}$$

Mixing occurs when flavor and hamiltonian eigenstates differ that is when there is a non-zero mass difference $\Delta m = m_1 - m_2$ or lifetime difference $\Delta\Gamma = \Gamma_{_1} - \Gamma_{_2}$ Base change: $|D_{1,2}\rangle = p|D^0\rangle + q|\overline{D}^0\rangle$

$$|D_{1,2}\rangle = p|D^0\rangle + q|\overline{D}^0\rangle$$

where $|p|^2 + |q|^2 = 1$

The mixing parameters are defined as

$$x = \frac{m_1 - m_2}{\Gamma} \quad y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$$

where $\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$

More often you will find them expressed as x' and y'

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \delta & \sin \delta \\ -\sin \delta & \cos \delta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
 Where δ is the strong phase between the Cabibbo Favored and Doubly Cabibbo

Doubly Cabibbo Suppressed decay amplitudes

Mixing is well established in K, B_d, and B_s mesons

SM Predictions

Short distance contributions

- SM predicts small mixing effect
- b quark is CKM suppressed, s and d are GIM suppressed
- $\begin{array}{c|c} c & b, s, d & u \\ \hline W & \overline{b}, \overline{s}, \overline{d} & \overline{c} \end{array}$

Mainly contributes to mass difference $(x\sim O(10^{-5}))$

Long distance contributions

- Hadronic intermediate states dominant but still small
- Non perturbative
- Mainly affects the lifetime difference. Predictions give x and y in the range [0.001, 0.01], and |x| < |y|</p>

New Physics

- NP with new particles in loops
 - Sensitivity to NP through the mixing parameters
 - If |x| >> |y| or $CPV \Rightarrow$ hint of NP
 - Requires direct measurement of x and y separately
 - $^{\circ}$ D $^{\circ}$ → K $^{+}$ π^{-} analysis measures x $^{\prime}$ 2 and y $^{\prime}$ (strong phase rotated)
 - Relative $D^0-\overline{D}{}^0$ strong phase cannot be resolved at B factories in $D^0\to K^+\pi^-$ decays
 - Decay modes like $D0 \rightarrow K_s h^+ h^-$ where the final state can be accessed by both D^0 and \overline{D}^0 can resolve the strong phase via Dalitz analysis
 - Find CPV in SM is not expected with current sensitivity

D-Mixing and CPV Analyses

Mixing:

$$D^0 \rightarrow K^+ \pi^-$$

$$\rightarrow$$
 D⁰ \rightarrow K⁺ K⁻, π ⁺ π ⁻

$$D^0 \to K^+ \pi^- \pi^0$$

$$D^0 \rightarrow K^{(*)} I^+ \nu$$

$$D^0 \to \mathsf{K}_{\mathsf{S}} \ \pi^+ \ \pi^-$$

Measurement in time dependent semileptonic decays.

Dalitz time dependent analysis

CPV:

$$\rightarrow$$
 D⁰ \rightarrow K⁺ K⁻, π ⁺ π ⁻

PEP II and BaBar

North Damping Ring 11.15 GeV1

> South Damping Ring [1.15 GeV]

Leimen, Charmuy

Positron Return Line

Sector-10 PEP II

PEP II Low Energy Bypass (LEB)

INFN

PEP II

IR-2

Detector

PEP II Low Energy Ring (LER)

[3.1 GeV

PEP II

High Energy

Ring (HER)

Positron Source

- PEP II
 - Asymmetric
 - High Luminosity
 - On Y(4S) resonance
 - or 40MeV below for the off-peak
 - Final run also on Y(2S),Y(3S) and scan above Y(4S)

- 1200 tons multipurpose detector
- Wide angle coverage
- 1.5T magnetic field
- A flavor factory
 - $\delta = 1.10 \text{ nb}$
 - $\sigma_{c\bar{c}} = 1.30 \text{ nb}$
 - $\sigma_{\tau \tau} = 0.89 \text{ nb}$
 - $\sigma_{uds} = 2.09 \text{ nb}$

432/fb of Y(4S)→B \overline{B} events and 1.3 millions of c \overline{c} events per fb

D Production and Selection

- Select a clean sample of D^0 and \overline{D}^0 by tagging the flavor at production time using the decays $D^{*\pm} \rightarrow \pi^{\pm}_{\ \ c} D^0$
 - Select events around the expected $\Delta m = m(D^{*+}_{rec}) m(D^{0}_{rec})$
 - The charge of the slow pion determines the flavor of the D⁰
- Identify the D⁰ flavor at decay time using the charge of the kaon
 - $D^0 \rightarrow K^- \pi^+$ right-sign (RS)
 - \triangleright D⁰ \rightarrow K⁺ π ⁻ wrong-sign (WS)
- Vertices fit with beamspot constraint determines $m_{K\pi}$, Δm , proper time t and its error $\delta_{\!_+}$

Right-sign (RS) decay

Typical D⁰ flight length $d\sim240\mu m$ Average resolution $\sigma_d\sim95\mu m$

Lifetime Measurement

- In absence of CPV, D₁ is CP-even and D₂ is CP-odd
- Lifetime τ measures for D⁰ decays to CP-even and CP-odd final states result in a measure for y_{CP}:

$$y_{CP} = \frac{\tau_{K\pi}}{\langle \tau_{hh} \rangle} - 1$$

 \square Allowing for CPV measure the D° and \square 0 asymmetry

$$\Delta y = \frac{\tau_{K\pi}}{\langle \tau_{hh} \rangle} A_{\tau}$$

where

$$\langle au_{hh}
angle = rac{ au^+ + au^-}{2}, \quad A_ au = rac{ au^+ - au^-}{ au^+ + au^-} \, \stackrel{f g}{\stackrel{f i}{\stackrel{b}{\sim}}_{10}}$$

 $D^0 \rightarrow K^- \pi^+ + cc$

Lifetime Results

Most recent result from BaBar

Mode	$y_{\scriptscriptstyle CP}\left(\% ight)$.	$\Delta Y = (1 - y_{\scriptscriptstyle CP}) A_{ au}~(\%)$
K^+K^-	$1.60 \pm 0.46 \pm 0.17$	$-0.40 \pm 0.44 \pm 0.12$
	$0.46 \pm 0.65 \pm 0.25$	$0.05 \pm 0.64 \pm 0.32$
Combined	$1.24 \pm 0.39 \pm 0.13$	$(0.26 \pm 0.36 \pm 0.08)$

3.0 σ evidence - no *CPV* PRD 78 011105(R) (2008) 384 fb⁻¹

Combining 384 /fb tagged and 91 /fb untagged (BaBar): $y_{CP} = (1.03 \pm 0.33(\text{stat.}) \pm 0.19(\text{syst.}))\%$

HFAG World Average:

 $y_{CP} = (1.072 \pm 0.257)\%$ arXiv 0808:1297 (2008)

Mixing in WS $D^0 \rightarrow K^+\pi^-$

- The WS decays can occur via
 - Doubly Cabibbo-suppressed (DCS)
 - Mixing followed by the Cabibbo-Favored (CF) decay
- Two ways to reach the same final state: interference
 - The proper time evolution discriminates between the two
 - Assuming no CPV

$$\frac{d\Gamma}{dt}[|D^0(t)\rangle \to f] \propto e^{-\Gamma t} \left(R_{\rm D} + \sqrt{R_{\rm D}}y' \Gamma t + \frac{{x'}^2 + {y'}^2}{4} (\Gamma t)^2\right)$$
 Interference between DCB and mixing

 ${\color{red} \underline{ \bullet}}_{{\scriptscriptstyle K}\pi}$ being the strong phase between CF and DCF decay amplitudes

$$x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi}, \qquad y' = -x \sin \delta_{K\pi} + y \cos \delta_{K\pi}$$

Observation of Mixing in $D \rightarrow K^+\pi^-$

Lesson Evidence of mixing from BaBar (3.9 σ) confirmed by CDF (3.8 σ)

- Best fit
- Best fit x'² >0
- + No mixing

Experiment	$R_D(10^{-3})$	$y'(10^{-3})$	$x^{\prime 2}(10^{-3})$	Mixing Signif.
CDF	3.04 ± 0.55	8.5 ± 7.6	-0.12 ± 0.35	3.8
BABAR	3.03 ± 0.19	9.7 ± 5.4	-0.22 ± 0.37	3.9
Belle	3.64 ± 0.17	0.6 + 4.0 - 3.9	0.18 + 0.21 - 0.23	2.0

Mixing in WS $D^0 \rightarrow K^+\pi^-\pi^0$

 \blacksquare Analysis formally similar to the WS D⁰→K⁺π⁻ analysis but the strong phase δ depends on the position on the Dalitz plot

$$\begin{array}{ll} \frac{dN_{\bar{f}}(s_{12},s_{13},t)}{ds_{12}ds_{13}dt} \; = \; e^{-\Gamma t}\{|A_{\bar{f}}|^2 + \;\;\; \text{DCS Decays} \\ & \text{Interference} & \;\; |A_{\bar{f}}||\bar{A}_{\bar{f}}|\left[y\cos\delta_{\bar{f}} - x\sin\delta_{\bar{f}}\right](\Gamma t) + \\ & \text{Mixing} & \;\; \frac{x^2 + y^2}{4}|\bar{A}_{\bar{f}}|^2(\Gamma t)^2\} \end{array}$$

$$\overline{A}_{\bar{f}} = \overline{A}_{\bar{f}}(S_{12}, S_{13}) = \left\langle K^{+}\pi^{-}\pi^{0} \middle| H \middle| \overline{D}^{0} \right\rangle$$

$$A_{\bar{f}} = A_{\bar{f}}(S_{12}, S_{13}) = \left\langle K^{+}\pi^{-}\pi^{0} \middle| H \middle| D^{0} \right\rangle$$

$$S_{12} = M_{K^{+}\pi^{-}}$$

$$S_{13} = M_{K^{+}\pi^{0}}$$

The mixing parameters are

$$x' = x \cos(\delta) + y \sin(\delta)$$

$$y' = y \cos(\delta) - x \sin(\delta)$$

 δ is the phase difference between DCS $D^0\!\!\to\!\!\rho\,K^{\scriptscriptstyle +}$ and $\overline{D}{}^0\!\!\to\!\!\rho\,K^{\scriptscriptstyle +}$ reference amplitudes and cannot be determined in this analysis

Result: no evidence of CPV

384 fb-1 : arXiv:0807, 4544 [hep-ex], submitted to PRL

signal box: $0.1449 < \Delta m < 0.1459 \text{ GeV}/c^2$ $1.8495 < m_{K\pi\pi} < 1.8795 \text{ GeV}/c^2$

RS signal purity: 99% WS signal purity: 50%

Evidence of Mixing

BABAR: PRL 98 211802 (2007)	D^0 — $K^+\pi^-$ decay time analysis	3.9σ
BELLE: PRL 98 211803 (2007)	D^0 — K^+K^- , $\pi^+\pi^-$ vs $K^+\pi^-$ lifetime difference analysis	3.2σ
BELLE: PRL 99 131803 (2007)	$D^0 - \!$	2.2σ
CDF: PRL 100, 121802 (2008)	$D^0 extcolor{-}K^+\pi^-$ decay time analysis	3.8σ
BABAR: PRD 78, 011105 R (2008)	D^0 — K^+K^- , $\pi^+\pi^-$ vs $K^+\pi^-$ lifetime difference analysis	3σ
BABAR: arXiv:0807, 4544 (2008)	$D^0 - K^+ \pi \pi^0$ time dependent amplitude analysis	3.1σ
	all mixing results combined by HFAG:	~10 <i>σ</i>

- No-Mixing point excluded at 9.8σ
- \blacksquare No single mixing measurement exceeds 5σ but combined significance does.
- No evidence for CPV in mixing

Time Integrated CPV

$$a_{CP}^{hh} = \frac{\Gamma(D^0 \to h^- h^+) - \Gamma(\bar{D}^0 \to h^+ h^-)}{\Gamma(D^0 \to h^- h^+) + \Gamma(\bar{D}^0 \to h^+ h^-)}$$

- Measures the time integrated CP asymmetries in CP-even final states
- SM predictions are very small (10⁻⁽⁴⁻⁵⁾)
 - a 0.1% level observation would indicate NP
- \blacksquare Relative $\pi_s^+ \pi_s^-$ tracking efficiencies are not equal
 - ightharpoonup Use $D^0
 ightharpoonup K^-\pi^+$ tagged and untagged data to determine this systematic
 - Will scale down with luminosities
- Based on the measurement of the asymmetries of the partial decay widths
 - Due to Z/γ interference and radiative corrections D^0 and \overline{D}^0 are produced with a forward backward asymmetry in the CM polar angle
 - Compute the $D^0 \overline{D}^0$ flavor asymmetry vs $\cos\theta$ in the center of mass
 - \bullet Extract A_{cn} and A_{fh} by constructing even and odd functions of $cos\theta$

$$a^{\pm}(\cos\theta) = \frac{N^{D^{\circ}}(\pm\cos\theta) - N^{D^{\circ}}(\pm\cos\theta)}{N^{D^{\circ}}(\pm\cos\theta) + N^{D^{\circ}}(\pm\cos\theta)}$$

+: forward hemisphere

-: backward hemisphere

$$\frac{a^{+}(\cos\theta) + a^{-}(\cos\theta)}{2} \approx a_{CP} (\cos\theta)$$
$$\frac{a^{+}(\cos\theta) - a^{-}(\cos\theta)}{2} \approx a_{FB} (\cos\theta)$$

0≤cosθ≤1

CP Asymmetries

Time integrated CP asymmetry

PRL 100 061803 (2008), 384/fb

No evidence of CPV

$$a_{CP}^{KK} = (0.00 \pm 0.34 \pm 0.13)\%$$

$$a_{CP}^{\pi\pi} = (-0.24 \pm 0.54 \pm 0.22)\%$$

Phase space integrated CP asymmetry

Phys. Rev. D78 051102 (2008)

No evidence of CPV

$$a_{CP}^{\pi\pi\pi^{0}} = (-0.31 \pm 0.41 \pm 0.17)\%$$
 -0.01 $a_{CP}^{KK\pi^{0}} = (1.00 \pm 1.67 \pm 0.25)\%$

Summary

- Combined evidence for D-mixing
 - No-mixing point excluded at 10σ (HFAG average)
 - No single measure exceeds 5σ
- Average values are still compatible with the SM
 - X~1%, y~0.8%
- No evidence of CP violation

Backup

Preview

- \blacksquare D⁰ Dalitz decays (D⁰ \rightarrow K_s π^+ π^- , K_s K⁺ K⁻, D⁰ \rightarrow π^+ $\pi^ \pi^0$)
 - Since evolution of mass eigenstates is known, the time dependent amplitude is

$$\langle f|\mathcal{H}|D^0(t)\rangle = A_f\left(\frac{1+\chi}{2}e_1(t) + \frac{1-\chi}{2}e_2(t)\right)$$

Where

$$\tilde{A}_f = \langle f | \mathcal{H} | \tilde{D}^0 \rangle = \tilde{A}_f(m_{K_sh^+}^2, m_{K_sh^-}^2)$$

May implement CP violation in the mixing

May implement CP violation in the decay

- What is relevant from these expressions is the fact that the phase space and the life time dependencies do not factorize.
 - This entanglement is exactly what provides sensitivity to the mixing parameters x and y, directly.
- $\boxed{\blacksquare}$ Untagged lifetime ratio D⁰ → KK(ππ) / D⁰ → K π.
 - Update previous result with 384 fb⁻¹ of data.