D-mixing at CDF

Angelo Di Canto

INFN & University of Pisa

On behalf of the CDF collaboration

CHARM 2009 20-22 May 2009, Leimen (Germany)

Outline

Introduction

- Neutral Flavored Mesons Mixing
- Charm Mixing in $D^0 \to K^+ \pi^-$
- Important CDFII features


D-Mixing Analysis - PRL 100 (2008) 121802

- Data Sample
- Extract RS and WS Signals
- Strategy
- Results on Mixing Hypothesis

Prospects

- Charm Mixing
- CP Violation

Conclusions

Neutral Flavored Mesons Mixing

■ X ■ V

 Neutral mesons can oscillate between matter and anti-matter: mass eigenstates are different from flavor eigenstates

$$\begin{split} &i\frac{d}{dt} \begin{pmatrix} |D^0\rangle\\ |\overline{D}^0\rangle \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} M_{11} & M_{12}\\ M_{12}^* & M_{22} \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma_{11} & \Gamma_{12}\\ \Gamma_{12}^* & \Gamma_{22} \end{pmatrix} \end{bmatrix} \begin{pmatrix} |D^0\rangle\\ |\overline{D}^0\rangle \end{pmatrix} \\ &|D_{L,H}\rangle = p \mid D^0\rangle \pm q \mid \overline{D}^0\rangle \quad \text{ where } \quad \frac{q}{p} = \sqrt{\frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12} - \frac{i}{2}\Gamma_{12}}} \end{split}$$

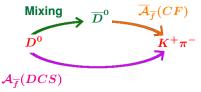
• Mixing usually described by two parameters

$$x = \frac{\Delta M}{\Gamma} = \frac{M_H - M_L}{(\Gamma_H + \Gamma_L)/2}, \qquad y = \frac{\Delta \Gamma}{2\Gamma} = \frac{\Gamma_H - \Gamma_L}{(\Gamma_H + \Gamma_L)}$$

- Charm mixing is much slower than kaon or beauty mixing $x,y \lesssim \mathcal{O}(10^{-3})$
- $\bullet\,$ Signals for New Physics would be $|x|\gg|y|$ or evidence for CP violation

B⁰

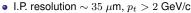
 B_s^0


Charm Mixing in $D^0 \rightarrow K^+ \pi^-$

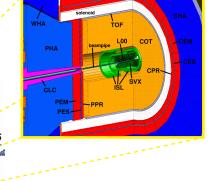
- Tag D^0 flavor at production time by $D^{\star +} \to D^0 \pi^+_s$ decay
- Measure time-dependence of Wrong-Sign $D^{\star+} \rightarrow [K^+\pi^-]\pi_s^+$ to Right-Sign $D^{\star+} \rightarrow [K^-\pi^+]\pi_s^+$ decay rates ratio

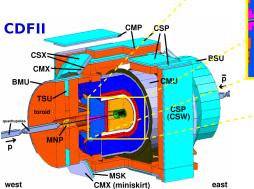
For WS two processes interfere:

- Mixing then Cabibbo-Favoured decay
- Doubly-Cabibbo-Supressed decay


assumes $|x|, |y| \ll 1$ and No-CPV

$$R(t) = R_D + \sqrt{R_D} \ y' \ (\Gamma_D t) + rac{x'^2 + y'^2}{4} \ (\Gamma_D t)^2$$

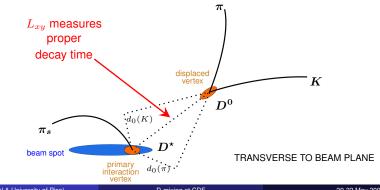

$$\frac{\mathcal{A}_{\overline{f}}(DCS)}{\overline{\mathcal{A}}_{\overline{f}}(CF)} = \sqrt{R_D} \ e^{-i\delta_{K\pi}}$$


$$x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi}$$
$$y' = y \cos \delta_{K\pi} - x \sin \delta_{K\pi}$$

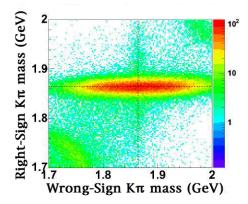
- Central drift chamber in magnetic field
 - $\sigma(p_t)/p_t^2 \sim 0.15\%$ (GeV/c) $^{-1}$ (excellent tracking/mass resolution)
 - dE/dx measurement
- Silicon Vertex detector

- Hadronic trigger
 - Two tracks in COT+SVX, $p_t > 2$ GeV/c

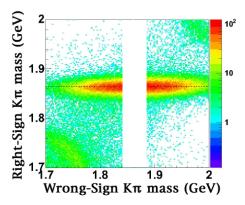
A. Di Canto (INFN & University of Pisa)


Data Sample

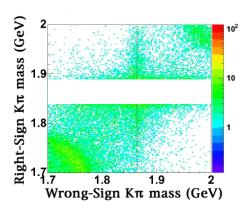
Data collected from Feb 2002 to Jan 2007: $\int {\cal L} dt \sim$ 1.5/fb @ \sqrt{s} =1.96 TeV


Decay reconstruction:

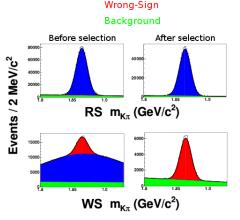
- Two opposite charge tracks from a displaced vertex (hadronic trigger) form $D^0 \to K\pi$ candidate
 - $|d_0(K,\pi)| > 100 \ \mu \text{m}$ (good acceptance for proper decay time $\gtrsim 0.5 \ D^0$ lifetimes)
 - $L_{xy} > 200 \ \mu m$
- Add a "soft" track to form $D^{\star} \rightarrow D^{0} \pi_{s}$ candidate



- D^0 candidate considered with both $K^-\pi^+$ and π^-K^+ particle assignments
 - Mis-assigned mass distribution has width $10\times$ the correct assignment width ($\sim 8~{\rm MeV}/c^2)$



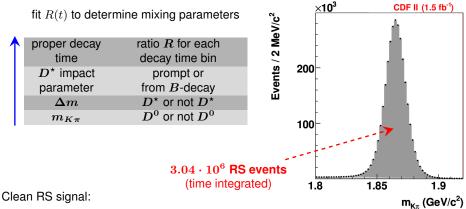
- D^0 candidate considered with both $K^-\pi^+$ and π^-K^+ particle assignments
 - Mis-assigned mass distribution has width $10\times$ the correct assignment width ($\sim 8~{\rm MeV}/c^2)$
- For RS exclude candidates with WS mass $|m_{K\pi}-m_{D^0}|<20~{\rm MeV/c^2}$ and viceversa
 - Keeps 78% of signal, 3.6% mis-assigned



- D^0 candidate considered with both $K^-\pi^+$ and π^-K^+ particle assignments
 - Mis-assigned mass distribution has width $10\times$ the correct assignment width ($\sim 8~{\rm MeV}/c^2)$
- For RS exclude candidates with WS mass $|m_{K\pi}-m_{D^0}|<20~{\rm MeV/c^2}$ and viceversa
 - Keeps 78% of signal, 3.6% mis-assigned

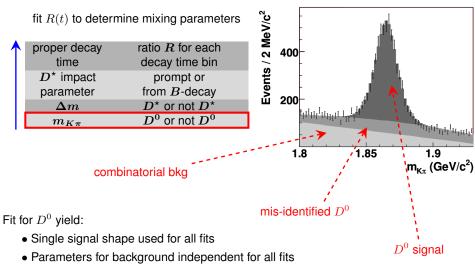
- D^0 candidate considered with both $K^-\pi^+$ and π^-K^+ particle assignments
 - Mis-assigned mass distribution has width $10\times$ the correct assignment width ($\sim 8~{\rm MeV}/c^2)$
- For RS exclude candidates with WS mass $|m_{K\pi}-m_{D^0}|<20~{\rm MeV/c^2}$ and viceversa
 - Keeps 78% of signal, 3.6% mis-assigned
- Compare two-track PID probability (from measured dE/dx) for $K^-\pi^+$ and π^-K^+ assignments, use higher value
- Mass and PID cuts greatly clean up the mis-assigned background

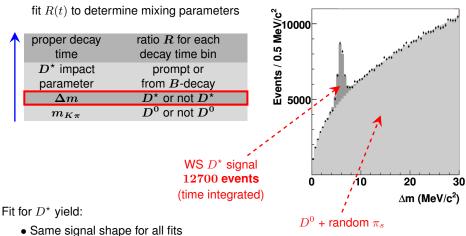
Right-Sign

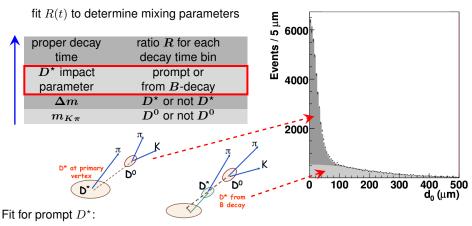

fit R(t) to determine mixing parameters

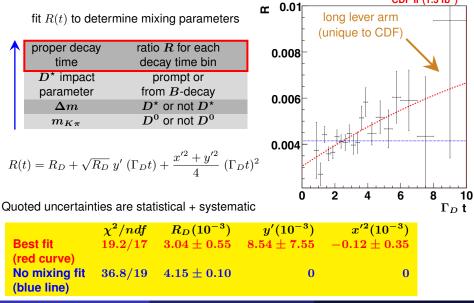
	proper decay time	ratio R for each decay time bin
	D^{\star} impact	prompt or
	parameter	from <i>B</i> -decay
	Δm	D^{\star} or not D^{\star}
	$m_{K\pi}$	D^0 or not D^0

When events are divided into RS and WS perform a series of binned fits to look for mixing:

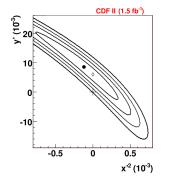

- Signal yields from a set of fits is used in the next round of fits
- Deal with particular backgrounds one at a time
- Backgrounds from early fit stages are not present in later fits


- RS signal PDFs obtained from fits of the RS data
- WS signal events have the same distributions as RS except for decay time (same kinematics)
- Use data as much as possible, MC only for guidance


 \bullet Typical $\chi^2/{\rm ndf}\approx 1$

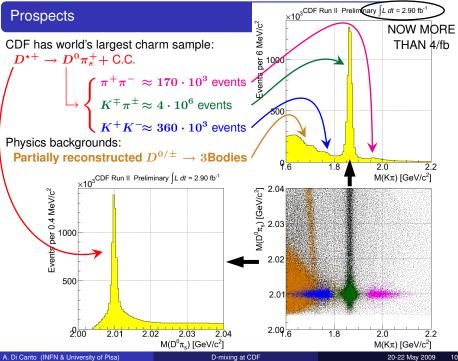

- Same signal shape for all his
- Background shape constant in time
- Time-independent parameters for signal and background yields

- D^{\star} from B decays will have wrong decay time
- D^* from *B* decays have a broader impact parameter (*d*₀) distribution than promptly produced D^*


CDF II (1.5 fb⁻¹)

A. Di Canto (INFN & University of Pisa)

Results on Mixing Hypothesis



No-mixing excluded at 3.8 Gaussian standard deviations level

- $\bullet\,$ Probability intervals for the mixing parameters equivalent to $1\text{-}4\;\sigma$
- + = no mixing point $(x'^2, y' = 0)$
- • = best fit point
- $\Diamond = \mbox{highest probability physically allowed point} (x'^2 > 0)$

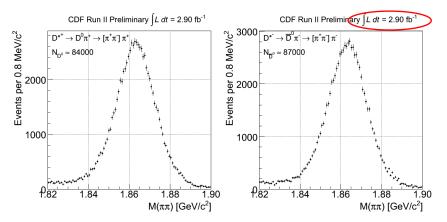
	data	N_{WS}	$x^{\prime 2}(10^{-3})$	$y'(10^{-3})$	signif.
Belle	400/fb	4024	$0.18\substack{+0.21 \\ -0.23}$	$0.6\substack{+4.0 \\ -3.9}$	2.0σ
<i>Phys. Rev. Lett.</i> 96 (2006) 151801 <i>BaBar</i>	384/fb	4030	-0.22 ± 0.37	9.7 ± 5.4	3.9σ
<i>Phys. Rev. Lett.</i> 98 (2007) 211802 CDF	1.5/fb	12700	-0.12 ± 0.35	8.5 ± 7.6	3.8σ
Phys. Rev. Lett. 100 (2008) 121802					

10/13

- Improve the existing analysis
 - more data
 - more sophisticated techniques
 - allowing for CPV
- Perform also lifetime analysis in $D^0 \rightarrow h^+ h^-$ (h = K or π)

$$y_{\rm CP} = \frac{\tau(K^-\pi^+)}{\tau(h^-h^+)} - 1$$

	data	$y_{CP}(\%)$	signif.
Belle Phys. Rev. Lett. 98 (2007) 211803 BaBar	540/fb 384/fb	$1.31 \pm 0.32 \; (stat.) \pm 0.25 \; (syst.)$ $1.03 \pm 0.33 \; (stat.) \pm 0.19 \; (syst.)$	3.2σ 3.0σ
Phys. Rev. D 78 (2008) 011105			



Update CDF published results on CPV asymmetries in Cabibbo-supressed D^0 decays: *Phys. Rev. Lett.* **94** (2005) 122001

Preliminary study on 2.9/fb to estimate statistical resolution

DATA BACKGROUND-SUBTRACTED

Prospects: CP Violation

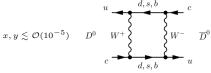
Estimated statistical uncertainty on $D^0 \rightarrow \pi^+\pi^-$ CP asymmetry based on counting:

$$A_{\rm CP}(h^+h^-) = \frac{N(\overline{D}^0 \to h^+h^-) - N(D^0 \to h^-h^+)}{N(\overline{D}^0 \to h^+h^-) + N(D^0 \to h^-h^+)}$$

	data	$A_{CP}(\pi^{+}\pi^{-})$ (%)
Our estimate	2.9/fb	$XXX \pm 0.24 (stat.)$
CDF <i>Phys. Rev. Lett.</i> 94 (2005) 122001 <i>BaBar</i>	0.123/fb	$+2.00 \pm 1.20 \; (stat.) \pm 0.60 \; (syst.)$
	386/fb	$-0.24 \pm 0.52 \; (stat.) \pm 0.22 \; (syst.)$
Phys. Rev. Lett. 100 (2008) 061803 Belle Phys. Lett. B 670 (2008) 190	540/fb	$-0.43 \pm 0.52 \; (stat.) \pm 0.12 \; (syst.)$

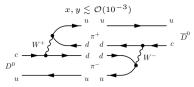
similar estimate for $D^0 \to K^+ K^-$

- CDF has the world's largest charm sample: rich program that includes access to CPV asymmetries, branching fractions, mixing, mixing-induced CPV
- In 2007 CDF confirmed the *BaBar* evidence for charm mixing with time dependent $D^0 \rightarrow K^+\pi^-$ analysis: no mixing excluded @ 3.8 σ
- Now a lot of promising work in progress: e.g. expected statistical resolutions on CPV asymmetries in Cabibbo-suppressed D⁰ decays 2× better than B-Factories


Backup Slides

Charm Mixing Predictions

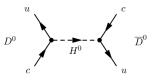
Standard Model

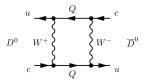

[arXiv:hep-ph/0310076]

 Box diagram SM charm mixing rate naively expected to be very low:

•
$$b \operatorname{loop} \operatorname{CKM} \operatorname{suppressed} \rightarrow |V_{ub} V_{cb}^*|^2 \ll 1$$

- s, d loops GIM suppressed $\rightarrow (m_s^2 m_d^2)/m_W^2$
- Enhanced rate SM calculations generally due to long-distance y contributions:




 Generally: calculations are difficult and uncertainties are quite large

New Physics

[arXiv:0705.3650]

- Possible enhancements to mixing due to new particles and interactions in new physics models
- Most new physics predictions for x:
 - Fourth generation down-type quarks
 - Extended Higgs, tree-level FCNC
 - Supersymmetry: gluinos, squarks

• Signals for NP would be $|x| \gg |y|$ or evidence for CPV

CDF:

- Binned fits
- $12700 \text{ WS } D^*$ produced at primary vertex
- D^0 decay times from 0.75 to 10 lifetimes
- Only no CPV fit ($D^{\star+}$ and $D^{\star-}$ combined)

BaBar and Belle:

- Unbinned maximum likelihood fit
- 4000 WS but better signal/background
- D^0 decay times from 0 to ~ 4 lifetimes
- Additional fit allowing for CPV (D^{*+} and D^{*-} separated)

Quoted uncertainties are statistical + systematic

- Most parameters for the background shapes and amplitudes are determined by the fits of the data, associated syst. uncertainties already included in the uncertainty on the RS and WS signal yields
- We added additional systematic effects that were not part of the fit procedure (bkg shape in the Δm distribution)
- Detector geometric acceptance, trigger efficiency, PID, time resolution have negligible effect on the WS/RS ratio (compared to current uncertainties)