Charm Mixing and Rare Decays: Looking for New Physics

Alexey A. Petrov
Wayne State University Michigan Center for Theoretical Physics

Table of Contents:

- Introduction
- Charm mixing
- New Physics in $\Delta c=1$
- New Physics in $\Delta c=2$
- Mixing vs rare decays
- Things to take home

1. Introduction: identifying New Physics

The LHC ring is 27 km in circumference KEKb - 3 km ...

How can KEK or other smaller machines help with New Physics searches?

Introduction: charm and New Physics

Charm transitions serve as excellent probes of New Physics
Unique access to up-quark sector

1. Processes forbidden in the Standard Model to all orders

Examples: $\quad D^{0} \rightarrow p^{+} \pi^{-} \nu$
2. Processes forbidden in the Standard Model at tree level

Examples: $\quad D^{0}-\bar{D}^{0}$ mixing, $D \rightarrow \ell^{+} \ell^{-}, D \rightarrow X \gamma, \ldots$
3. Processes allowed in the Standard Model

Examples: 1. relations, valid in the SM, but not necessarily in general CKM triangle relations
2. SM rates and uncertainties are known

Unique feature: not-so-heavy quark

2. $\bar{D}^{0}-D^{0}$ mixing?

(*) up to matrix elements of 4-quark operators

Experimental constraints on mixing

Idea: look for a wrong-sign final state

1. Time-dependent or time-integrated semileptonic analysis

$$
\text { rate } \propto x^{2}+y^{2}
$$

Quadratic in $\mathbf{x , y}$: not so sensitive
2. Time-dependent $D^{0} \rightarrow K^{+} K^{-}$analysis (lifetime difference)

$$
y_{C P}=\frac{\tau\left(D \rightarrow \pi^{+} K^{-}\right)}{\tau\left(D \rightarrow K^{+} K^{-}\right)}-1=y \cos \phi-x \sin \phi \frac{1-R_{m}}{2}
$$

3. Time-dependent $D^{0}(t) \rightarrow K^{+} \pi^{-}$analysis

$$
\Gamma\left[D^{0}(t) \rightarrow K^{+} \pi^{-}\right]=e^{-\Gamma t}\left|A_{K^{+} \pi^{-}}\right|^{2}\left[R+\sqrt{R} R_{m}\left(y^{\prime} \cos \phi-x^{\prime} \sin \phi\right) \Gamma t+\frac{R_{m}^{2}}{4}\left(x^{2}+y^{2}\right)(\Gamma t)^{2}\right]
$$

4. Dalitz analyses $D^{0}(t) \rightarrow K \pi \pi, K K K$
5. Quantum correlations analyses

Recent experimental results

* Recent experimental data

\star Recent HFAG numbers

$$
x_{\mathrm{D}} \equiv \frac{\Delta M_{\mathrm{D}}}{\Gamma_{\mathrm{D}}}=0.0100_{-0.0026}^{+0.0024} \quad \text { and } \quad y_{\mathrm{D}} \equiv \frac{\Delta \Gamma_{\mathrm{D}}}{2 \Gamma_{\mathrm{D}}}=0.0076_{-0.0018}^{+0.0017}
$$

See A. Schwartz's talk for details

Standard Model predictions

* Not an actual representation of theoretical uncertainties. Objects might be bigger then what they appear to be...
\star Predictions of x and y in the SM are complicated -second order in flavor SU(3) breaking $-m_{c}$ is not quite large enough for OPE $-x, y \ll 10^{-3}$ ("short-distance") $-x, y \sim 10^{-2}$ ("long-distance")
\star Short distance:
-assume m_{c} is large
-combined $m_{s}, 1 / m_{c}, a_{s}$ expansions -leading order: $m_{s}{ }^{2}, 1 / m_{c}{ }^{6}$!
H. Georgi; T. Ohl, ...
I. Bigi, N. Uraltsev;

Long distance:
M. Bobrowski et al
-assume m_{c} is NOT large
-sum of large numbers with alternating signs, SU(3) forces zero!
-multiparticle intermediate states dominate
J. Donoghue et. al. P. Colangelo et. al.

Falk, Grossman, Ligeti, Nir. A.A.P. Phys.Rev. D69, 114021, 2004 Falk, Grossman, Ligeti, and A.A.P. Phys.Rev. D65, 054034, 2002

How New Physics affects x and y

$>$ Local $\Delta c=2$ piece of the mass matrix affects x :

$$
\left(M-\frac{i}{2} \Gamma \dot{j}_{i j}=m_{D}^{(0)} \delta_{i j}+\frac{1}{2 m_{D}}\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=2}\left|D_{j}^{0}\right\rangle+\frac{1}{2 m_{D}} \sum_{T} \frac{\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=1}|I\rangle\langle I| H_{W}^{\Delta C=1}\left|D_{j}^{0}\right\rangle}{m_{D}^{2}-m_{I}^{2}+i \varepsilon}\right.
$$

> Double insertion of $\Delta C=1$ affects x and y :

$$
\text { Amplitude } A_{n}=\left\langle D^{0}\right|\left(H_{S M}^{\Delta C=1}+H_{N P}^{\Delta C=1}\right)|n\rangle \equiv A_{n}^{S M}+A_{n}^{N P}
$$

$$
\text { Suppose }\left|A_{n}^{N P}\right| /\left|A_{n}^{S M}\right|: O(\text { exp. uncertainty }) \leq 10 \%
$$

Example: $y=\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left(\bar{A}_{n}^{S M}+\bar{A}_{n}^{N P}\right)\left(A_{n}^{S M}+A_{n}^{N P}\right) \approx \frac{1}{2 \Gamma} \sum_{n} \rho_{n} \bar{A}_{n}^{S M} A_{n}^{S M}+\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left(\bar{A}_{n}^{S M} A_{n}^{N P}+\bar{A}_{n}^{N P} A_{n}^{S M}\right)$
phase space

How New Physics affects x and y

\rightarrow Local $\Delta c=2$ piece of the mass matrix affects x :

$$
\left(M-\frac{i}{2} \Gamma \frac{)}{j_{i j}}=m_{D}^{(0)} \delta_{i j}+\frac{1}{2 m_{D}}\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=2}\left|D_{j}^{0}\right\rangle+\frac{1}{2 m_{D}} \sum_{T} \frac{\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=1}|I\rangle\langle I| H_{W}^{\Delta C=1}\left|D_{j}^{0}\right\rangle}{m_{D}^{2}-m_{I}^{2}+i \varepsilon}\right.
$$

$>$ Double insertion of $\Delta C=1$ affects x and y :
Amplitude $A_{n}=\left\langle D^{0}\right|\left(H_{S M}^{\Delta C=1}+H_{N P}^{\Delta C=1}\right)|n\rangle \equiv A_{n}^{S M}+A_{n}^{N P}$

$$
\text { Suppose } \left.\quad\left|A_{n}^{N P}\right| /\left|A_{n}^{S M}\right|: O \text { (exp. uncertainty }\right) \leq 10 \%
$$

Example: $y=\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left(\bar{A}_{n}^{S M}+\bar{A}_{n}^{N P}\right)\left(A_{n}^{S M}+A_{n}^{N P}\right) \approx \frac{1}{2 \Gamma} \sum_{n} \rho_{n} \bar{A}_{n}^{S M} A_{n}^{S M}+\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left(\bar{A}_{n}^{S M} A_{n}^{N P}+\bar{A}_{n}^{N P} A_{n}^{S M}\right)$
phase space

How New Physics affects x and y

$>$ Local $\Delta c=2$ piece of the mass matrix affects x :

$$
\left(M-\frac{i}{2} \Gamma\right)_{i j}=m_{D}^{(0)} \delta_{i j}+\frac{1}{2 m_{D}}\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=2}\left|D_{j}^{0}\right\rangle+\frac{1}{2 m_{D}} \sum_{I} \frac{\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=1}|I\rangle\langle I| H_{W}^{\Delta C=1}\left|D_{j}^{0}\right\rangle}{m_{D}^{2}-m_{I}^{2}+i \varepsilon}
$$

$>$ Double insertion of $\Delta C=1$ affects x and y :
Amplitude $A_{n}=\left\langle D^{0}\right|\left(H_{S M}^{\Delta C=1}+H_{N P}^{\Delta C=1}\right)|n\rangle \equiv A_{n}^{S M}+A_{n}^{N P}$

$$
\text { Suppose } \left.\left|A_{n}^{N P}\right| /\left|A_{n}^{S M}\right|: O \text { (exp. uncertainty }\right) \leq 10 \%
$$

Example: $y=\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left(\bar{A}_{n}^{S M}+\bar{A}_{n}^{N P}\right)\left(A_{n}^{S M}+A_{n}^{N P}\right) \approx \frac{1}{2 \Gamma} \sum_{n} \rho_{n} \bar{A}_{n}^{S M} A_{n}^{S M}+\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left(\bar{A}_{n}^{S M} A_{n}^{N P}+\bar{A}_{n}^{N P} A_{n}^{S M}\right)$
phase space

How New Physics affects x and y

$>$ Local $\Delta c=2$ piece of the mass matrix affects x :

$$
\left(M-\frac{i}{2} \Gamma\right)_{i j}=m_{D}^{(0)} \delta_{i j}+\frac{1}{2 m_{D}}\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=2}\left|D_{j}^{0}\right\rangle+\frac{1}{2 m_{D}} \sum_{T} \frac{\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=1}|I\rangle\langle I| H_{W}^{\Delta C=1}\left|D_{j}^{0}\right\rangle}{m_{D}^{2}-m_{I}^{2}+i \varepsilon}
$$

$>$ Double insertion of $\Delta C=1$ affects x and y :

$$
\text { Amplitude } A_{n}=\left\langle D^{0}\right|\left(H_{S M}^{\Delta C=1}+H_{N P}^{\Delta C=1}\right)|n\rangle \equiv A_{n}^{S M}+A_{n}^{N P}
$$

$$
\text { Suppose } \quad\left|A_{n}^{N P}\right| /\left|A_{n}^{S M}\right|: O(\text { exp. uncertainty }) \leq 10 \%
$$

$$
\text { Example: } \quad y=\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left(\bar{A}_{n}^{S M}+\bar{A}_{n}^{N P}\right)\left(A_{n}^{S M}+A_{n}^{N P}\right)=\left(\frac{1}{2 \Gamma} \sum_{n} \rho_{n} \bar{A}_{n}^{S M} A_{n}^{S M}\right)+\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left(\bar{A}_{n}^{S M} A_{n}^{N P}+\bar{A}_{n}^{N P} A_{n}^{S M}\right)
$$

How New Physics affects x and y

$>$ Local $\Delta c=2$ piece of the mass matrix affects x :

$$
\left(M-\frac{i}{2} \Gamma\right)_{i j}=m_{D}^{(0)} \delta_{i j}+\frac{1}{2 m_{D}}\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=2}\left|D_{j}^{0}\right\rangle+\frac{1}{2 m_{D}} \sum_{T} \frac{\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=1}|I\rangle\langle I| H_{W}^{\Delta C=1}\left|D_{j}^{0}\right\rangle}{m_{D}^{2}-m_{I}^{2}+i \varepsilon}
$$

\rightarrow Double insertion of $\Delta c=1$ affects x and y :

$$
\text { Amplitude } A_{n}=\left\langle D^{0}\right|\left(H_{S M}^{\Delta C=1}+H_{N P}^{\Delta C=1}\right)|n\rangle \equiv A_{n}^{S M}+A_{n}^{N P}
$$

$$
\text { Suppose } \quad\left|A_{n}^{N P}\right| /\left|A_{n}^{S M}\right|: O(\text { exp. uncertainty }) \leq 10 \%
$$

Zero in the SU(3) limit
Can be significant!!!
Falk, Grossman, Ligeti, and A.A.P.
Phys.Rev. D65, 054034, 2002
$2^{\text {nd }}$ order effect!!!

Global Analysis of New Physics: $\Delta C=1$

Let's write the most general $\Delta c=1$ Hamiltonian

$$
\begin{aligned}
& \mathcal{H}_{\mathrm{NP}}^{\Delta C=-1}=\sum_{q, q^{\prime}} D_{q q^{\prime}}\left[\overline{\mathcal{C}}_{1}(\mu) Q_{1}+\overline{\mathcal{C}}_{2}(\mu) Q_{2}\right], \\
& Q_{1}=\bar{u}_{i} \bar{\Gamma}_{1} q_{j}^{\prime} \bar{q}_{j} \bar{\Gamma}_{2} c_{i}, \quad Q_{2}=\bar{u}_{i} \bar{\Gamma}_{1} q_{i}^{\prime} \bar{q}_{j} \bar{\Gamma}_{2} c_{j},
\end{aligned}
$$

Only light on-shell (propagating) quarks affect $\Delta \Gamma$:

$$
\begin{aligned}
y= & -\frac{4 \sqrt{2} G_{F}}{M_{D} \Gamma_{D}} \sum_{q, q^{\prime}} \mathbf{V}_{c q^{\prime}}^{*} \mathbf{V}_{u q} D_{q q^{\prime}}\left(K_{1} \delta_{i k} \delta_{j \ell}+K_{2} \delta_{i \ell} \delta_{j k}\right) \\
& \times \sum_{\alpha=1}^{5} I_{\alpha}\left(x, x^{\prime}\right)\left\langle\bar{D}^{0}\right| \mathcal{O}_{\alpha}^{i j k \ell}\left|D^{0}\right\rangle,
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{O}_{1}^{i j k \ell} & =\bar{u}_{k} \Gamma_{\mu} \gamma_{\nu} \bar{\Gamma}_{2} c_{j} \bar{u}_{\ell} \bar{\Gamma}_{1} \gamma^{\nu} \Gamma^{\mu} c_{i} \\
\mathcal{O}_{2}^{i j k \ell} & =\bar{u}_{k} \Gamma_{\mu} \boldsymbol{\phi}_{c} \bar{\Gamma}_{2} c_{j} \bar{u}_{\ell} \bar{\Gamma}_{1} \Gamma^{\mu} c_{i} \\
\mathcal{O}_{3}^{i j k \ell} & =\bar{u}_{k} \Gamma_{\mu} \bar{\Gamma}_{2} c_{j} \bar{u}_{\ell} \bar{\Gamma}_{1} \boldsymbol{p}_{c} \Gamma^{\mu} c_{i} \\
\mathcal{O}_{4}^{i j k \ell} & =\bar{u}_{k} \Gamma_{\mu} \not{ }_{j} \bar{\Gamma}_{2} c_{j} \bar{u}_{\ell} \bar{\Gamma}_{1} \Gamma^{\mu} c_{i} \\
\mathcal{O}_{5}^{i j k \ell} & =\bar{u}_{k} \Gamma_{\mu} \bar{\Gamma}_{2} c_{j} \bar{u}_{\ell} \bar{\Gamma}_{1} \Gamma^{\mu} c_{i},
\end{aligned}
$$

Global Analysis of New Physics: $\Delta C=1$

Some examples of New Physics contributions

Model	$\mathbf{y}_{\mathbf{D}}$	Comment
RPV-SUSY	610^{-6}	Squark Exch.
-410^{-2}	Slepton Exch.	
Left-right	-510^{-6}	'Manifest'.
-8.810^{-5}	'Nonmanifest'.	
Multi-Higgs	210^{-10}	Charged Higgs
Extra Quarks	10^{-8}	Not Little Higgs

E. Golowich, S. Pakvasa, A.A.P. Phys. Rev. Lett. 98, 181801, 2007
A.A.P. and G. Yeghiyan Phys. Rev. D77, 034018 (2008)
M. Bobrowski et al arXiv: 0904.3971 [hep-ph]

For considered models, the results are smaller than observed mixing rates

Global Analysis of New Physics: $\Delta C=2$

\rightarrow Multitude of various models of New Physics can affect x

Global Analysis of New Physics: $\Delta C=2$

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. Phys. Rev. D76:095009, 2007

Let's write the most general $\Delta c=2$ Hamiltonian

$$
\langle f| \mathcal{H}_{N P}|i\rangle=G \sum_{i=1} \mathrm{C}_{i}(\mu)\langle f| Q_{i}|i\rangle(\mu)
$$

... with the following set of 8 independent operators...

$Q_{1}=\left(\bar{u}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{u}_{L} \gamma^{\mu} c_{L}\right), \quad Q_{5}=\left(\bar{u}_{R} \sigma_{\mu \nu} c_{L}\right)\left(\bar{u}_{R} \sigma^{\mu \nu} c_{L}\right)$,
$Q_{2}=\left(\bar{u}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{u}_{R} \gamma^{\mu} c_{R}\right)$,
$Q_{6}=\left(\bar{u}_{R} \gamma_{\mu} c_{R}\right)\left(\bar{u}_{R} \gamma^{\mu} c_{R}\right)$,
$Q_{3}=\left(\bar{u}_{L} c_{R}\right)\left(\bar{u}_{R} c_{L}\right)$,
$Q_{T}=\left(\bar{u}_{L} c_{R}\right)\left(\bar{u}_{L} c_{R}\right)$,
$Q_{4}=\left(\bar{u}_{R} c_{L}\right)\left(\bar{u}_{R} c_{L}\right)$,
$Q_{8}=\left(\bar{u}_{L} \sigma_{\mu \nu} c_{R}\right)\left(\bar{u}_{L} \sigma^{\mu \nu} c_{R}\right)$

$\mu: 1 \mathrm{GeV}$
RG-running relate $C_{i}(m)$ at NP scale to the scale of $m \sim 1 \mathrm{GeV}$, where ME are computed (on the lattice)

$$
\frac{d}{d \log \mu} \vec{C}(\mu)=\hat{\gamma}^{T}(\mu) \vec{C}(\mu)
$$

Each model of New Physics provides unique matching condition for $\mathrm{C}_{\mathrm{i}}\left(\Lambda_{\mathrm{NP}}\right)$

New Physics in x : lots of extras

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. Phys. Rev. D76:095009, 2007

New Physics contributions do not suffer from QCD uncertainties as much as SM contributions since they are short-distance dominated.
> Extra gauge bosons
Left-right models, horizontal symmetries, etc.
> Extra scalars
Two-Higgs doublet models, leptoquarks, Higgsless, etc.

- Extra fermions
$4^{\text {th }}$ generation, vector-like quarks, little Higgs, etc.
- Extra dimensions

Universal extra dimensions, split fermions, warped ED, etc.

- Extra symmetries

SUSY: MSSM, alignment models, split SUSY, etc.

Total: 21 models considered

Dealing with New Physics-I

> Consider an example: FCNC Z ${ }^{0}$-boson
appears in models with
extra vector-like quarks little Higgs models

1. Integrate out Z : for $\mu<M_{z}$ get

$$
\mathcal{H}_{2 / 3}=\frac{g^{2}}{8 \cos ^{2} \theta_{w} M_{Z}^{2}}\left(\lambda_{u c}\right)^{2} \bar{u}_{L} \gamma_{\mu} c_{L} \bar{u}_{L} \gamma^{\mu} c_{L}
$$

2. Perform RG running to $\mu \sim m_{c}$ (in general: operator mixing)

$$
\mathcal{H}_{2 / 3}=\frac{g^{2}}{8 \cos ^{2} \theta_{w} M_{Z}^{2}}\left(\lambda_{u c}\right)^{2} r_{1}\left(m_{c}, M_{Z}\right) Q_{1}
$$

3. Compute relevant matrix elements and x_{D}

$$
x_{\mathrm{D}}^{(2 / 3)}=\frac{2 G_{F} f_{\mathrm{D}}^{2} M_{\mathrm{D}}}{3 \sqrt{2} \Gamma_{D}} B_{D}\left(\lambda_{u c}\right)^{2} r_{1}\left(m_{c}, M_{Z}\right)
$$

4. Assume no SM - get an upper bound on NP model parameters (coupling)

Dealing with New Physics - II

> Consider another example: warped extra dimensions
FCNC couplings via KK gluons

1. Integrate out KK excitations, drop all but the lightest

$\mathcal{H}_{R S}=\frac{2 \pi k r_{c}}{3 M_{1}^{2}} g_{s}^{2}\left(C_{1}\left(M_{n}\right) Q_{1}+C_{2}\left(M_{n}\right) Q_{2}+C_{6}\left(M_{n}\right) Q_{6}\right)$
2. Perform RG running to $\mu \sim m_{c}$
$\mathcal{H}_{R S}=\frac{g_{s}^{2}}{3 M_{1}^{2}}\left(C_{1}\left(m_{c}\right) Q_{1}+C_{2}\left(m_{c}\right) Q_{2}+C_{3}\left(m_{c}\right) Q_{3}+C_{6}\left(m_{c}\right) Q_{6}\right)$

Dealing with New Physics - II

> Consider another example: warped extra dimensions
FCNC couplings via KK gluons

1. Integrate out KK excitations, drop all but the lightest

$\mathcal{H}_{R S}=\frac{2 \pi k r_{c}}{3 M_{1}^{2}} g_{s}^{2}\left(C_{1}\left(M_{n}\right) Q_{1}+C_{2}\left(M_{n}\right) Q_{2}+C_{6}\left(M_{n}\right) Q_{6}\right)$
2. Perform RG running to $\mu \sim m_{c}$
$\mathcal{H}_{R S}=\frac{g_{s}^{2}}{3 M_{1}^{2}}\left(C_{1}\left(m_{c}\right) Q_{1}+C_{2}\left(m_{c}\right) Q_{2}+C_{3}\left(m_{c}\right) Q_{3}+C_{6}\left(m_{c}\right) Q_{6}\right)$

$x_{\mathrm{D}}^{(R S)}=\frac{g_{s}^{2}}{3 M_{1}^{2}} \frac{f_{D}^{2} B_{D} M_{D}}{\Gamma_{D}}\left(\frac{2}{3}\left[C_{1}\left(m_{c}\right)+C_{6}\left(m_{c}\right)\right]-\frac{1}{6} C_{2}\left(m_{c}\right)-\frac{5}{12} C_{3}\left(m_{c}\right)\right)$
Implies: $M_{1 K K g}>2.5 \mathrm{TeV}$!

Constraints on New Physics from x

Extra fermions

- Extra vector bosons

Extra scalars

Summary: New Physics in mixing

Model	Approximate Constraint
Fourth Generation (Fig. 2)	$\left\|V_{u b} V_{c c^{\prime}}\right\| \cdot m_{b}<0.5(\mathrm{GeV})$
$Q=-1 / 3$ Singlet Quark (Fig. 4)	$s_{2} \cdot m_{S}<0.27(\mathrm{GeV})$
$Q=+2 / 3$ Singlet Quark (Fig. 6)	$\left\|\lambda_{u c}\right\|<2.4 \cdot 10^{-4}$
Little Higgs	Tree: See entry for $Q=-1 / 3$ Singlet Quark
	Box: Region of parameter space can reach observed x_{D}
Generic Z^{\prime} (Fig. 7)	$M_{Z^{\prime}} / C>2.2 \cdot 10^{3} \mathrm{TeV}$
Family Symmetries (Fig. 8)	$m_{1} / f>1.2 \cdot 10^{3} \mathrm{TeV}$ (with $m_{1} / m_{2}=0.5$)
Left-Right Symmetric (Fig. 9)	No constraint
Alternate Left-Right Symmetric (Fig. 10)	$M_{R}>1.2 \mathrm{TeV}\left(m_{D_{1}}=0.5 \mathrm{TeV}\right)$
	$\left(\Delta m / m_{D_{1}}\right) / M_{R}>0.4 \mathrm{TeV}^{-1}$
Vector Leptoquark Bosons (Fig. 11)	$M_{V L Q}>55\left(\lambda_{p P} / 0.1\right) \mathrm{TeV}$
Flavor Conserving Two-Higgs-Doublet (Fig. 13)	No constraint
Flavor Changing Neutral Higgs (Fig. 15)	$m_{H} / C>2.4 \cdot 10^{3} \mathrm{TeV}$
FC Neutral Higgs (Cheng-Sher ansatz) (Fig. 16)	$m_{H} /\left\|\Delta_{u c}\right\|>600 \mathrm{GeV}$
Scalar Leptoquark Bosons	See entry for RPV SUSY
Higgsless (Fig. 17)	$M>100 \mathrm{TeV}$
Universal Extra Dimensions	No constraint
Split Fermion (Fig. 19)	$M /\|\Delta y\|>\left(6 \cdot 10^{2} \mathrm{GeV}\right)$
Warped Geometries (Fig. 21)	$M_{1}>3.5 \mathrm{TeV}$
Minimal Supersymmetric Standard (Fig. 23)	$\left\|\left(\delta_{12}^{u}\right)_{\text {LR,RL }}\right\|<3.5 \cdot 10^{-2}$ for $\tilde{m} \sim 1 \mathrm{TeV}$
	$\left\|\left(\delta_{12}^{u}\right)_{\mathrm{LL}, \mathrm{RR}}\right\|<.25$ for $\tilde{m} \sim 1 \mathrm{TeV}$
Supersymmetric Alignment	$\tilde{m}>2 \mathrm{TeV}$
Supersymmetry with RPV (Fig. 27)	$\lambda_{12 k}^{\prime} \lambda_{11 k}^{\prime} / m_{\tilde{d}_{K, k}}<1.8 \cdot 10^{-3} / 100 \mathrm{GeV}$
Split Supersymmetry	No constraint

\checkmark Considered 21 wellestablished models

\checkmark Only 4 models yielded no useful constraints
\checkmark Consult paper for explicit constraints on your favorite model!
E.Golowich, J. Hewett, S. Pakvasa and A.A.P. Phys. Rev. D76:095009, 2007

3. Mixing vs rare decays

$>$ These decays only proceed at one loop in the SM; GIM is very effective - SM rates are expected to be small
\star Radiative decays $D \rightarrow y X$, yy mediated by $c \rightarrow u \gamma$

- SM contribution is dominated by LD effects
- dominated by SM anyway: useless?

$\mathcal{L}_{\text {eff }}^{\mathrm{SD}}=\frac{G_{F}}{\sqrt{2}} V_{c b}^{*} V_{u b} \sum_{i=7,9,10} C_{i} Q_{i}$,

$$
\begin{gathered}
Q_{7}=\frac{e}{8 \pi^{2}} m_{c} F_{\mu \nu} \bar{u} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) c, \quad Q_{9}=\frac{e^{2}}{16 \pi^{2}} \bar{u}_{L} \gamma_{\mu} c_{L} \bar{\ell} \gamma^{\mu} \ell, \\
Q_{10}=\frac{e^{2}}{16 \pi^{2}} \bar{u}_{L} \gamma_{\mu} c_{L} \bar{\ell} \gamma^{\mu} \gamma_{5} \ell,
\end{gathered}
$$

- SM contribution is dominated by LD effects

- could be used to study NP effects and correlate to mixing
\star Rare decays $D \rightarrow M e^{+} e^{-} / \mu^{+} \mu^{-} / T^{+} T^{-}$mediated by $c \rightarrow u$ II
- SM contribution is dominated by LD effects

Burdman, Golowich, Hewett, Pakvasa;

- could be used to study NP effects

Rare and radiative decays

Some examples of New Physics contributions

\star R-partity-conserving SUSY

- operators with the same mass insertions contribute to D-mixing

Bigi, Gabbiani, Masiero; Prelovsek, Wyler;

- feed results into rare decays: NP is smaller than LD SM!

Fajfer, Kosnik, Prelovsek

* R-partity-violating SUSY
- operators with the same parameters contribute to D-mixing
- feed results into rare decays
* Same for other models...

Mode	LD	Extra heavy q	LD + extra heavy q
$D^{+} \rightarrow \pi^{+} e^{+} e^{-}$	2.0×10^{-6}	1.3×10^{-9}	2.0×10^{-6}
$D^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$	2.0×10^{-6}	1.6×10^{-9}	2.0×10^{-6}
Mode	MSSM $\nless k$	LD + MSSM $\not 2$	
$D^{+} \rightarrow \pi^{+} e^{+} e^{-}$	2.1×10^{-7}	2.3×10^{-6}	
$D^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$	6.5×10^{-6}	8.8×10^{-6}	

Mixing vs rare decays

* Most general effective Hamiltonian:

$$
\begin{array}{lll}
\langle f| \mathcal{H}_{N P}|i\rangle=G \sum_{i=1} \mathrm{C}_{i}(\mu)\langle f| Q_{i}|i\rangle(\mu) & \widetilde{Q}_{1}=\left(\bar{\ell}_{L} \gamma_{\mu} \ell_{L}\right)\left(\bar{u}_{L} \gamma^{\mu} c_{L}\right), & \widetilde{Q}_{4}=\left(\bar{\ell}_{R} \ell_{L}\right)\left(\bar{u}_{R} c_{L}\right), \\
& \widetilde{Q}_{2}=\left(\bar{\ell}_{L} \gamma_{\mu} \ell_{L}\right)\left(\bar{u}_{R} \gamma^{\mu} c_{R}\right), & \widetilde{Q}_{5}=\left(\bar{\ell}_{R} \sigma_{\mu \nu} \ell_{L}\right)\left(\bar{u}_{R} \sigma^{\mu \nu} c_{L}\right), \\
& \widetilde{Q}_{3}=\left(\bar{\ell}_{L} \ell_{R}\right)\left(\bar{u}_{R} c_{L}\right), & \text { plus } L \leftrightarrow \mathrm{R}
\end{array}
$$

\star... thus, the amplitude for $D \rightarrow e^{+} e^{-} / \mu^{+} \mu^{-} / T^{+} T^{-}$decay is

$$
\begin{aligned}
\mathcal{B}_{D^{0} \rightarrow \ell^{+} \ell^{-}}= & \frac{M_{D}}{8 \pi \Gamma_{\mathrm{D}}} \sqrt{1-\frac{4 m_{\ell}^{2}}{M_{D}^{2}}\left[\left(1-\frac{4 m_{\ell}^{2}}{M_{D}^{2}}\right)|A|^{2}+|B|^{2}\right],} \\
\mathcal{B}_{D^{0} \rightarrow \mu^{+} e^{-}}= & \frac{M_{D}}{8 \pi \Gamma_{\mathrm{D}}}\left(1-\frac{m_{\mu}^{2}}{M_{D}^{2}}\right)^{2}\left[|A|^{2}+|B|^{2}\right], \\
& |A|=G \frac{f_{D} M_{D}^{2}}{4 m_{c}}\left[\widetilde{C}_{3-8}+\widetilde{C}_{4-9}\right], \\
& |B|=G \frac{f_{D}}{4}\left[2 m_{\ell}\left(\widetilde{C}_{1-2}+\widetilde{C}_{6-7}\right)+\frac{M_{D}^{2}}{m_{c}}\left(\widetilde{C}_{4-3}+\widetilde{C}_{9-8}\right)\right]
\end{aligned}
$$

Important: many NP models give contributions to both $\mathbf{D}-$ mixing and $\mathbf{D} \rightarrow \mathbf{e}^{+} \mathbf{e}^{-/} \mu^{+} \mu^{-/} \tau^{+} \tau^{-}$decay: correlate!!!

Mixing vs rare decays

Recent experimental constraints

$$
\begin{aligned}
& \mathcal{B}_{D^{0} \rightarrow \mu^{+} \mu^{-}} \leq 1.3 \times 10^{-6}, \quad \mathcal{B}_{D^{0} \rightarrow e^{+} e^{-}} \leq 1.2 \times 10^{-6}, \\
& \mathcal{B}_{D^{0} \rightarrow \mu^{ \pm} e^{\mp}} \leq 8.1 \times 10^{-7},
\end{aligned}
$$

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. arXiv: 0903.2830
Relating mixing and rare decay

- consider an example: heavy vector-like quark ($Q=+2 / 3$) - appears in little Higgs models, etc.

Mixing: $\quad \mathcal{H}_{2 / 3}=\frac{g^{2}}{8 \cos ^{2} \theta_{w} M_{Z}^{2}} \lambda_{u c}^{2} Q_{1}=\frac{G_{F} \lambda_{u c}^{2}}{\sqrt{2}} Q_{1}$

$$
x_{\mathrm{D}}^{(+2 / 3)}=\frac{2 G_{F} \lambda_{u c}^{2} f_{D}^{2} M_{D} B_{D} r\left(m_{c}, M_{Z}\right)}{3 \sqrt{2} \Gamma_{D}}
$$

Rare decay: $\quad A_{D^{0} \rightarrow \ell^{+} \ell^{-}}=0 \quad B_{D^{0} \rightarrow \ell^{+} \ell^{-}}=\lambda_{u c} \frac{G_{F} f_{\mathrm{D}} m_{\mu}}{2}$

$$
\begin{aligned}
\mathcal{B}_{D^{0} \rightarrow \mu^{+} \mu^{-}} & =\frac{3 \sqrt{2}}{64 \pi} \frac{G_{F} m_{\mu}^{2} x_{\mathrm{D}}}{B_{\mathrm{D}} r\left(m_{c}, M_{Z}\right)}\left[1-\frac{4 m_{\mu}^{2}}{M_{\mathrm{D}}}\right]^{1 / 2} \\
& \simeq 4.3 \times 10^{-9} x_{\mathrm{D}} \leq 4.3 \times 10^{-11}
\end{aligned}
$$

Note: a parameter-free relation!

Mixing vs rare decays

* Correlation between mixing/rare decays
- possible for tree-level NP amplitudes
- some relations possible for loop-dominated transitions
\star Considered several popular models

Model	$\mathcal{B}_{D^{0} \rightarrow \mu^{+} \mu^{-}}$
Standard Model (SD)	$\sim 10^{-18}$
Standard Model (LD)	\sim several $\times 10^{-13}$
$Q=+2 / 3$ Vectorlike Singlet	4.3×10^{-11}
$Q=-1 / 3$ Vectorlike Singlet	$1 \times 10^{-11}\left(m_{S} / 500 \mathrm{GeV}\right)^{2}$
$Q=-1 / 3$ Fourth Family	$1 \times 10^{-11}\left(m_{S} / 500 \mathrm{GeV}\right)^{2}$
Z^{\prime} Standard Model (LD)	$2.4 \times 10^{-12} /\left(M_{Z^{\prime}}(\mathrm{TeV})\right)^{2}$
Family Symmetry	$0.710^{-18}(\mathrm{Case} \mathrm{A})$
RPV-SUSY	$1.7 \times 10^{-9}\left(500 \mathrm{GeV} / m_{\tilde{d} k}\right)^{2}$

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. arXiv: 0903.2830 [hep-ph]

Upper limits on
rare
decay
branching ratios

Blum, Grossman, Nir, Perez arXiv:0903.2118 [hep-ph]

Things to take home

$>$ Indirect effects of New Physics at flavor factories help to distinguish among models possibly observed at the LHC

- a combination of bottom/charm sector studies
- don't forget measurements unique to tau-charm factories
> Charm provides great opportunities for New Physics studies
- unique access to up-type quark sector
- large available statistics/in many cases small SM background
- D-mixing is a second order effect in SU(3) breaking ($x, y \sim 1 \%$ in the $S M$)
- large contributions from New Physics are possible
- out of 21 models studied, 17 yielded competitive constraints
> Can correlate mixing and rare decays with New Physics models
- signals in D-mixing vs rare decays help differentiate among models
> Observation of CP-violation in the current round of experiments provide "smoking gun" signals for New Physics
- Different observables should be used to disentangle CP-violating contributions to $\Delta c=1$ and $\Delta c=2$ amplitudes

There is always something new in charm!

Additional slides

Theoretical estimates I

A. Short distance + "subleading corrections" (in $\left\{m_{s}, 1 / m_{c}\right\}$ expansion):

$$
\begin{aligned}
& y_{s d}^{(6)} \propto \frac{\left(m_{s}^{2}-m_{d}^{2}\right)^{2}}{m_{c}^{2}} \frac{m_{s}^{2}+m_{d}^{2}}{m_{c}^{2}} \mu_{\text {had }}^{-2} \propto m_{s}^{6} \Lambda^{-6} \\
& x_{s d}^{(6)} \propto \frac{\left(m_{s}^{2}-m_{d}^{2}\right)^{2}}{m_{c}^{2}} \mu_{h a d}^{-2} \propto m_{s}^{4} \Lambda^{-4}
\end{aligned}
$$

4 unknown matrix elements
...subleading effects?

$$
\begin{array}{llll}
y_{s d}^{(9)} & \propto & m_{s}^{3} & \Lambda^{-3} \\
x_{s d}^{(9)} \propto & m_{s}^{3} & \Lambda^{-3} \\
\hline
\end{array}
$$

$$
d=9
$$

Twenty-something unknown matrix elements

Guestimate: $\quad \mathrm{x} \sim \mathrm{y} \sim 10^{-3}$?

Theoretical estimates II

B. Long distance physics dominates the dynamics...

$$
y=\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left[\left\langle D^{0}\right| H_{W}^{\Delta C=1}|n\rangle\langle n| H_{W}^{\Delta C=1}\left|\bar{D}^{0}\right\rangle+\left\langle\bar{D}^{0}\right| H_{W}^{\Delta C=1}|n\rangle\langle n| H_{W}^{\Delta C=1}\left|D^{0}\right\rangle\right]
$$

... with n being all states to which D^{0} and \bar{D}^{0} can decay. Consider $\pi \pi, \pi K, K K$ intermediate states as an example...

$$
\begin{aligned}
y_{2} & =\operatorname{Br}\left(D^{0} \rightarrow K^{+} K^{-}\right)+B r\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right) \\
& -2 \cos \delta \sqrt{\operatorname{Br}\left(D^{0} \rightarrow K^{+} \pi^{-}\right) B r\left(D^{0} \rightarrow \pi^{+} K^{-}\right)}
\end{aligned}
$$

If every Br is known up to $O(1 \%) \quad \boldsymbol{\Delta}$ the result is expected to be $O(1 \%)$!

The result here is a series of large numbers with alternating signs, SU(3) forces 0
$x=$? Extremely hard...
 Need to "repackage" the analysis: look at the complete multiplet contribution

Theoretical estimates II

B. Long distance physics dominates the dynamics...

$$
y=\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left[\left\langle D^{0}\right| H_{W}^{\Delta C=1}|n\rangle\langle n| H_{W}^{\Delta} C=1\left|\bar{D}^{0}\right\rangle+\left\langle\bar{D}^{0}\right| H_{W}^{\Delta C=1}|n\rangle\langle n| H_{W}^{\Delta C=1}\left|D^{0}\right\rangle\right]
$$

... with n being all states to which D^{0} and \bar{D}^{0} can decay. Consider $\pi \pi, \pi K$, KK intermediate states as an example...

$$
\begin{aligned}
y_{2} & =\operatorname{Br}\left(D^{0} \rightarrow K^{+} K^{-}\right)+\operatorname{Br}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right) \\
& -2 \cos \delta \sqrt{\operatorname{Br}\left(D^{0} \rightarrow K^{+} \pi^{-}\right) \operatorname{Br}\left(D^{0} \rightarrow \pi^{+} K^{-}\right)}
\end{aligned}
$$

$$
\text { If every } \mathrm{Br} \text { is known up to } O(1 \%) \quad \boldsymbol{\Delta} \text { the result is expected to be } O(1 \%) \text { ! }
$$

The result here is a series of large numbers with alternating signs, SU(3) forces 0
$x=$? Extremely hard...
 Need to "repackage" the analysis: look at the complete multiplet contribution

