CP-tagged charm decays: relevance, status and prospects

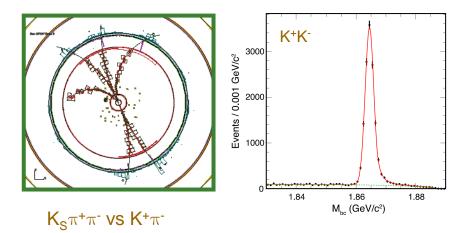
Introduction: quantum-correlated decays at the $\psi(3770)$

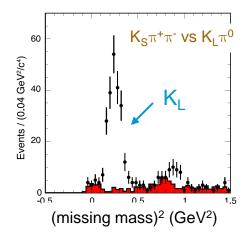
Quantum-correlated studies of D \to K_S $\pi^+\pi^-$ and K_SKK and impact on the γ determination

Quantum-correlated studies of D \rightarrow K π , K $\pi\pi\pi$ and K $\pi\pi^0$, and impact on the γ determination

Summary and Prospects

Guy Wilkinson (University of Oxford)
On behalf of the CLEO-c collaboration

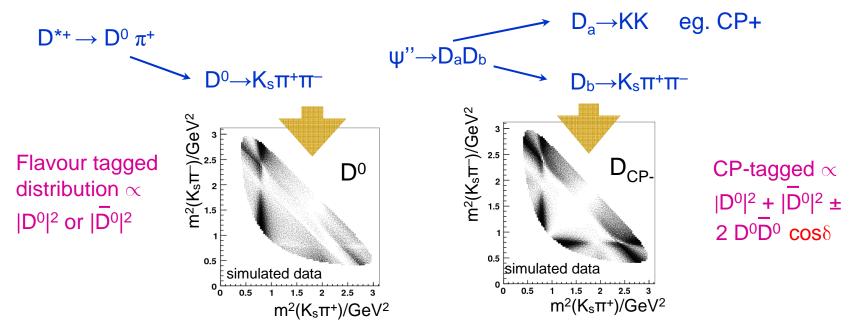



CP-tagging at the $\psi(3770)$

Best environment for CP-tagging is $e^+e^- \to \psi(3770) \to D^0D^0$. Reconstruct one meson in mode of interest, eg. $K_S\pi^+\pi^-$, & other in CP-eigenstate, eg. K^+K^- (CP+). Knowing that the $\psi(3770)$ is C=-1 allows us to infer the signal decay is CP-.

Threshold running has other practical advantages (all examples CLEO-c: hermetic detector with excellent EM and hadron PID):

• Very clean – no fragmentation particles.



 Unseen particle reconstruction through kinematic constraints

CLEO-c accumulated 818 pb⁻¹ at ψ (3770). Prospects for more at BES-III

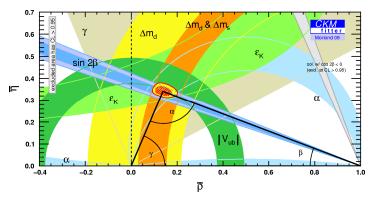
CP-tagged D-decays: the essential idea

Dalitz plots of CP-tagged decays at the Ψ " provide orthogonal info to flavour tagged events accessible in, eg., D* decays. They provide direct access to the cosine of strong phase difference between the D⁰ & D⁰ (cos δ)

In given bin of Dalitz space suitable combination of flavour & CP-tagged info allows $\cos \delta$ to be extracted. In fact, quantum-coherence means *other* hadronic decays, not only CP-eigenstates, can be used to extract useful information on δ , & more...

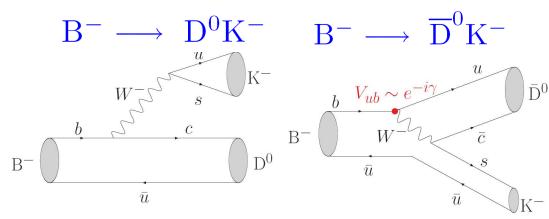
CP-tagged D-decays: applications

The strong phase information provided by quantum-correlated D- \bar{D} events Is important for three main reasons:


- Interesting in itself for understanding D-decay dynamics and resulting light-quark mesons produced
- 2) Strong phases appear in measurements of D-mixing parameters, eg. studies of 'wrong sign' $D^0 \rightarrow K^+\pi^-$ events

Want to
$$x = \Delta m/\Gamma$$
 Measure: $x' = x\cos\delta_{K\pi} + y\sin\delta_{K\pi}$ So need $y' = -x\sin\delta_{K\pi} + y\cos\delta_{K\pi}$ info on:

3) Invaluable for measurements of CKM angle γ in B \to DK decays (main focus of talk)


Present direct measurements give γ = (70 $^{+27}_{-30}$) $^{\circ}$ (CKMfitter)

Quantum-correlated D-decays

will play crucial role as B-decay statistical uncertainty decreases

γ from $B^{\pm} \rightarrow DK^{\pm}$

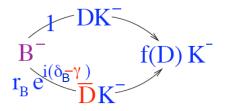
- Extraction through interference between
 b→u and b→c transitions
- Require D⁰ and D

 ⁰ decay to a common final state, f(D). Some examples:

$$\mathsf{K^0}_\mathsf{S}\mathsf{hh}$$
 ; $\mathsf{K}\pi$; $\mathsf{K}\pi\pi\pi$; $\mathsf{K}\pi\pi^0$

• Comparison of B- and B+ rates allow γ parameters vary over Dalitz space to be extracted. But other parameters in game. In particular invaluable to have constraint on δ_D – the very quantity we can access in quantum-correlated D-decays!

$$\begin{array}{c|c} DK & r_D e & D \\ \hline B & f(D) & K \\ \hline r_B e^{i(\delta_B - \gamma)} & DK \end{array}$$

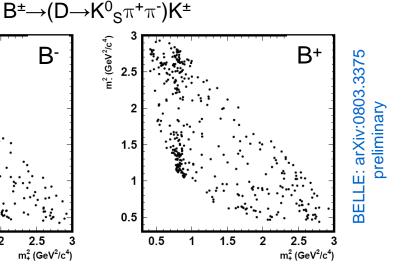

 $r_D \& \delta_D$ analogous to B-decay quantities.

For 3, 4-... body decays, these

Study of $D \rightarrow K_{S,L} \pi^+ \pi^-$ and $D \rightarrow K_{S,L} K^+ K^-$ Dalitz Plots in Quantum-correlated Decays

- Motivation: B-factory $B \rightarrow D(K_S \pi^+ \pi^-)K$ model dependent analyses
- The binned model independent $B \rightarrow D(K_S \pi^+ \pi^-)K$ analysis
- CLEO-c quantum-correlated study of D \to K_{S,L} $\pi^+\pi^-$
- Impact on the γ measurement
- ullet CLEO-c prospects for $D{
 ightarrow}K_{S,L}KK$

B-factory B \rightarrow D($K_S\pi^+\pi^-$)K Dalitz Plots for γ


A powerful (and at *present*, only statistically useful) choice of common state f(D) is $K_s\pi^+\pi^-$. Rich resonant substructure.

Differences between B⁻ and B⁺ Dalitz plots allow γ to be extracted in unbinned fit...

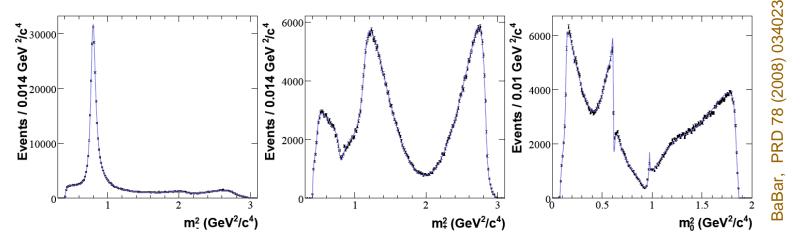
...need to understand different amplitudes from D^0 and \overline{D}^0 decay across Dalitz space, esp. variation in strong phase

Need a D decay model!

BaBar (383M BB)
$$\gamma = 76^{\circ} \pm 22^{\circ}(\text{stat}) \pm 5^{\circ}(\text{sys}) \pm 5^{\circ}(\text{model})$$

BELLE (657M BB) $\gamma = 76^{\circ}_{-13^{\circ}}^{+12^{\circ}}(\text{stat}) \pm 4^{\circ}(\text{sys}) \pm 9^{\circ}(\text{model})$

LHCb with 10 fb⁻¹ can approach 3° statistical error

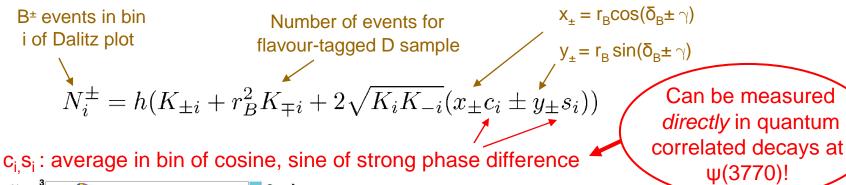

 $r_B = 0.09 \pm 0.09$ $r_B = 0.16 \pm 0.04$

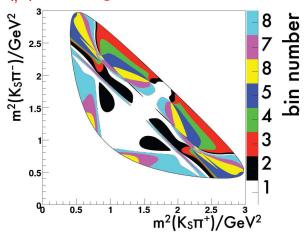
(NB sensitivity scales with r_B . All B \rightarrow DK data suggest \sim 0.10)

Modelling the $K_s \pi^+ \pi^-$ decay

Unbinned fit of Dalitz space in $B \rightarrow D(K_s \pi^+ \pi^-)K$ decays requires reliable model of D decay. Model developed on flavour tagged D* decays.

State of the art – BaBar model fitted from 487k decays:




Ingredients – 10 resonances described with isobar model. S-wave $\pi\pi$ and $K\pi$ treated with K-matrix approach and LASS parametrisation respectively (χ^2 / ndf = 1.11 to be compared with 1.20 for pure isobar model)

Impressive work – error on γ estimated to be 7° . But model systematic, even this small, uncomfortable for future very high stats measurements eg. LHCb.

Binned Model-Independent Fit

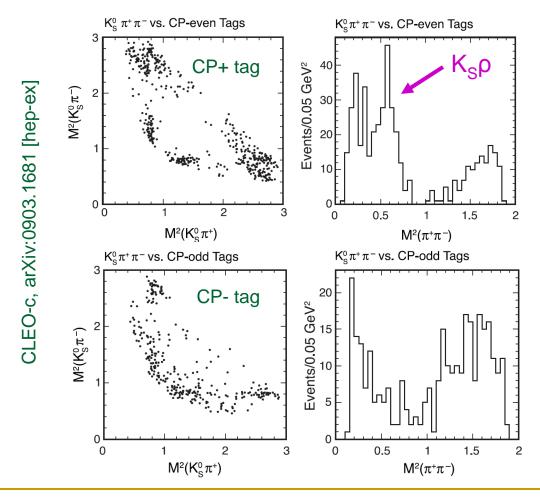
Binned fit proposed by Giri *et al.* [PRD 68 (2003) 054018] and developed by Bondar & Poluektov [EPJ C 55 (2008) 51; EPJ C47 (2006) 347] removes model dependence by relating events in bin i of Dalitz plot to *experimental observables*.

Choosing bins of *expected* similar strong Phase difference maximises statistical precision We will assume 8 bins of equal size in $\Delta\delta_D$ (and reference model will be: BaBar, PRL 95 (2005) 121802) Small loss in statistical sensitivity w.r.t. unbinned result... but no model error!

CLEO-c Quantum-Correlated $K_{S,L}\pi^+\pi^-$ Analysis

Use 818 pb⁻¹ of $\psi(3770)$ data

- Flavour tags: ~20k double-tags
- CP-tags: ~1600 double-tags
 - → needed for c_i extraction
- $K^0\pi^+\pi^-$ vs $K^0\pi^+\pi^-$ events: ~1300
 - → needed for s_i and c_i extraction
- Also note that $K_L \pi^+ \pi^-$ events are used more on these later !


Signal to background 10-100 depending on tag mode

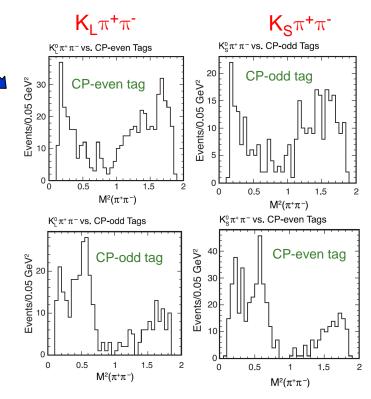
arXiv:0903.1681 [hep-ex]; submitted to PRD

N.C. 1	C/T 37: 11	rz0 + - · 11	720 + - 11	
Mode	ST Yield		$K_L^0 \pi^+ \pi^-$ yield	
Flavor Tags				
$K^-\pi^+$	144563 ± 403	1447	2858	
$K^-\pi^+\pi^0$	258938 ± 581	2776	5130	
$K^-\pi^+\pi^+\pi^-$	220831 ± 541	2250	4110	
$K^-e^+\nu$	123412 ± 4591	1356	-	
CP-Even Tags				
K^+K^-	12867 ± 126	124	345	
$\pi^+\pi^-$	5950 ± 112	62	172	
$K_S^0\pi^0\pi^0$	6562 ± 131	56	-	
$K_L^0\pi^0$	27955 ± 2013	229	=	
CP-Odd Tags				
$K_S^0\pi^0$	19059 ± 150	189	281	
$K_S^0 \eta$	2793 ± 69	39	41	
$K_S^0 \omega$	8512 ± 107	83	-	
$\frac{K_S^0 \eta}{K_S^0 \omega}$ $\frac{K_S^0 \pi^+ \pi^-}{K_S^0 \pi^+ \pi^-}$	-	475	867	

CP-tagged K_sπ⁺π⁻ Dalitz plots

Clear differences seen between CP-odd and CP-even:

A Word on $K_L \pi^+ \pi^-$ in CLEO-c Analysis

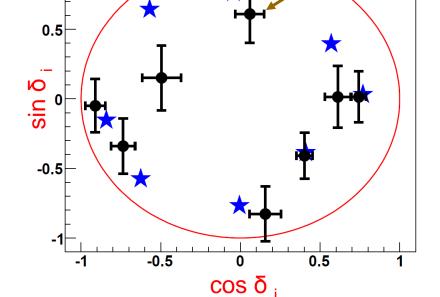

CP-odd $K_S \pi^+ \pi^- \approx$ CP-even $K_I \pi^+ \pi^-$ & so latter can be used to increase statistics

This approximate equality is seen in data

There is however a correction term:

$$\begin{array}{l} -\mathsf{A}\left(\mathsf{D}^{0}\to\mathsf{K}_{\mathsf{L}}^{0}\pi^{+}\pi^{-}\right) = \\ \\ \mathsf{A}\left(\mathsf{D}^{0}\to\mathsf{K}_{\mathsf{S}}^{0}\pi^{+}\pi^{-}\right) - \sqrt{2}\mathsf{A}\left(\mathsf{D}^{0}\to\mathsf{K}_{\mathsf{flavour}}^{0}\pi^{+}\pi^{-}\right) \\ \\ \mathsf{CF+DCS} \end{array}$$

Correction order $tan^2\theta_c$ – accounting for this introduces small model dependence


In analysis we measure separate c_i ', s_i ' for $K_L \pi^+ \pi^-$, which differ from c_i , s_i by offsets which are floated in fit, but constrained with conservative uncertainties

CLEO-c Results on c_i and s_i

Result \pm stat \pm syst \pm ($K_L \pi \pi \leftrightarrow K_S \pi \pi$ syst)

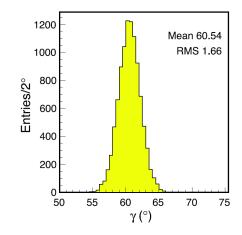
i c_i	s_i
$0 0.743 \pm 0.037 \pm 0.022 \pm 0.013$	$0.014 \pm 0.160 \pm 0.077 \pm 0.045$
$1 0.611 \pm 0.071 \pm 0.037 \pm 0.009$	$0.014 \pm 0.215 \pm 0.055 \pm 0.017$
$2 0.059 \pm 0.063 \pm 0.031 \pm 0.057$	$0.609 \pm 0.190 \pm 0.076 \pm 0.037$
$3 - 0.495 \pm 0.101 \pm 0.052 \pm 0.045$	$0.151 \pm 0.217 \pm 0.069 \pm 0.048$
$4 - 0.911 \pm 0.049 \pm 0.032 \pm 0.021$	$-0.050 \pm 0.183 \pm 0.045 \pm 0.036$
$5 -0.736 \pm 0.066 \pm 0.030 \pm 0.018$	$-0.340 \pm 0.187 \pm 0.052 \pm 0.047$
$6 0.157 \pm 0.074 \pm 0.042 \pm 0.051$	$-0.827 \pm 0.185 \pm 0.060 \pm 0.036$
$ 7 0.403 \pm 0.046 \pm 0.021 \pm 0.002 $	$-0.409 \pm 0.158 \pm 0.050 \pm 0.002$

- Statistical uncertainties dominant
- c_i better determined than s_i
- Results also available for c_i' and s_i'

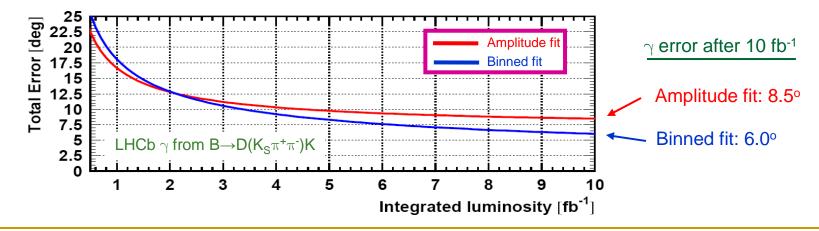
Model prediction

Broad agreement with predictions

(model = BaBar PRL 95 (2005) 121802)

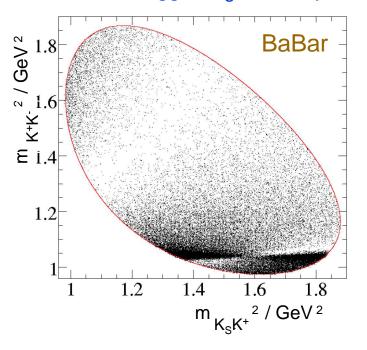

Result

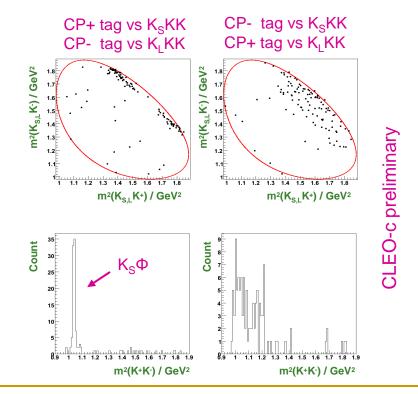
Impact on γ Measurement


CLEO-c analysis has eliminated model error, but there is a residual uncertainty on γ arising from finite knowledge of c_i and s_i .

This has been estimated with a 'toy MC' with many simulated $B \rightarrow D(K_S \pi^+ \pi^-)K$ experiments.

Error of 1.7° (recall model error = 7°)

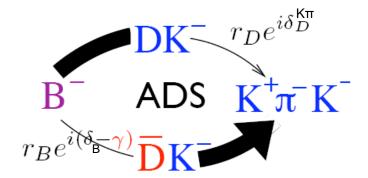

With this result the reduced (~20%) statistical precision of binned analysis w.r.t. unbinned fit will soon be overcome at LHCb, with statistics dominating uncertainty


Extending to K_SKK

Dalitz γ analysis can be extended to B \rightarrow D(K_SKK)K. Pioneered by BaBar [PRD 78 (2008) 034023] who have built an amplitude model with flavour tagged decays

Flavour tagged K_SKK decays

Measurement of c_i's and s_i's underway at CLEO-c using ~550 quantum-correlated double-tags



'ADS' B→DK Measurements and the impact of quantum-correlated decays

- The ADS B→DK measurement
- CLEO-c analysis of D→Kπ strong phase
- CLEO-c coherence factor analysis of D \rightarrow K $\pi\pi\pi$, K $\pi\pi^0$

Atwood-Dunietz-Soni (ADS) Method

Low interference scale of B \rightarrow DK method ($r_B\sim0.1$) can be enhanced by exploiting Doubly Cabibbo Suppressed modes eg. $D^0\rightarrow K^+\pi^-$

This introduces two new parameters:

$$\frac{<\mathrm{D}^0 \longrightarrow \mathrm{K}^+\pi^->}{<\overline{\mathrm{D}}^0 \longrightarrow \mathrm{K}^+\pi^->} = \mathrm{r}_\mathrm{D}^\mathrm{K\pi} \mathrm{e}^{i\delta_D^\mathrm{K\pi}} \qquad \mathrm{r}_\mathrm{D}^\mathrm{K\pi} \mathrm{known \ well, \ } \delta_\mathrm{D}^\mathrm{K\pi} \mathrm{unknown}$$
 ~0.06, ie. similar in magnitude to r_B

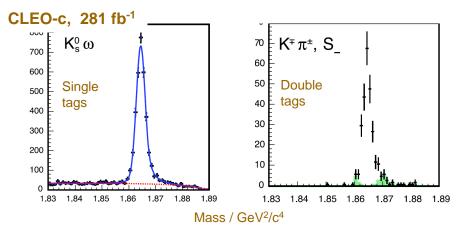
4 possible final states, for 2 of which there can be a big CP-asymmetry:

$$\Gamma(B^{-} \to (K^{+}\pi^{-})_{D}K^{-}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi} \cdot \cos(\delta_{B} + \delta_{D}^{K\pi} - \gamma)$$

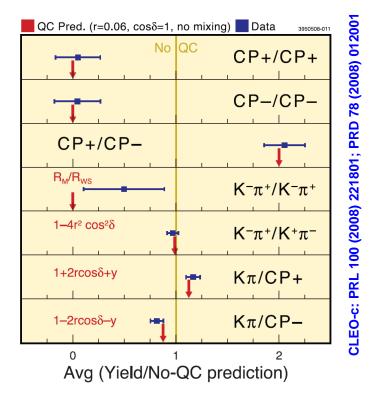
$$\Gamma(B^{+} \to (K^{-}\pi^{+})_{D}K^{+}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi} \cdot \cos(\delta_{B} + \delta_{D}^{K\pi} + \gamma)$$

A powerful way to constrain γ , but need to know $\delta_D^{K\pi}$ Can be measured in quantum correlated D decays!

these interference terms are 1st order


Measuring $\delta_{D}^{K\pi}$ in Quantum Correlated D Decays

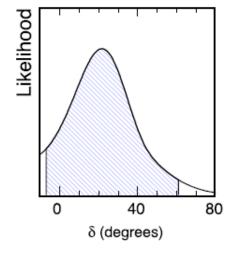
Usual idea: tag one D in CP eigenstate, other side is mixture of $\overline{D}{}^0$ and D 0 , hence:


Rate ~
$$B_{CP+}B_{K\pi} (1 + 2r_D^{K\pi} \cos \delta_D^{K\pi})$$

Approximate - full expression has additional dependence on mixing parameters x & y...

Analysis: measure set of single & double tag rates, with $K\pi$ vs CP tags, & flavour tags

Extract $\delta_D^{K\pi}$, plus results on other parameters, including branching ratios.


Quantum correlations clearly seen!

CLEO-c 281 pb⁻¹ Results for $\delta_D^{K\pi}$

Result also important for charm mixing (x', y' measured in 'wrong sign' $K\pi\pi$ analysis related to x, y through: $x' = x \cos \delta_D^{K\pi} + y \sin \delta_D^{K\pi}$)

Most precise result on $\delta_D^{K\pi}$ obtained with mixing results used as external constraint:

$$\delta_{D}^{K\pi} = \left(22_{-12-11}^{+11+9}\right)^{\circ}$$

Result will improve with full 818 fb⁻¹ data set and inclusion of additional tags

Fit results with all external constraints

Parameter	Extended Fit
$\mathcal{N} (10^6)$	$1.042 \pm 0.021 \pm 0.010$
$y(10^{-3})$	$6.5 \pm 0.2 \pm 2.1$
$r^2 (10^{-3})$	$3.44 \pm 0.01 \pm 0.09$
$\cos \delta$	$1.10 \pm 0.35 \pm 0.07$
$x^2 (10^{-3})$	$0.06 \pm 0.01 \pm 0.05$
$x\sin\delta$ (10^{-3})	$4.4 \pm 2.4 \pm 2.9$
$K^{-}\pi^{+}$ (%)	$3.78 \pm 0.05 \pm 0.05$
$K^-K^+(10^{-3})$	$3.88 \pm 0.06 \pm 0.06$
$\pi^-\pi^+ (10^{-3})$	$1.36 \pm 0.02 \pm 0.03$
$K_S^0 \pi^0 \pi^0 (10^{-3})$	$8.35 \pm 0.44 \pm 0.42$
$K_S^0 \pi^0 \ (\%)$	$1.14 \pm 0.03 \pm 0.03$
$K_S^{\tilde{0}}\eta \ (10^{-3})$	$4.42 \pm 0.15 \pm 0.28$
$K_S^0\omega$ (%)	$1.12 \pm 0.04 \pm 0.05$
$X^{-}e^{+}\nu_{e}(\%)$	$6.59 \pm 0.16 \pm 0.16$
$K_L^0 \pi^0 \ (\%)$	$1.01 \pm 0.03 \pm 0.02$
$\frac{1}{\chi_{\rm fit}^2/{\rm ndof}}$	55.3/57
	·

see Paras Naik talk

Extending ADS to Multi-body D Decays

ADS method can be extended to other decays with D \rightarrow K + n π , eg. K $^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$

Only difference: intermediate resonances such as $D \rightarrow K^*p$, $K^-a_1(1260)^+$, etc mean that many amplitudes contribute, each with their own strong phase

If we make no attempt to isolate a particular resonance, then interference term is diluted by a 'coherence factor' $R_{\text{K}3\pi}$

$$\Gamma(B^{-} \to (K^{+}\pi^{-}\pi^{-}\pi^{+})_{D}K^{-}) \propto r_{B}^{2} + (r_{D}^{K3\pi})^{2} + 2r_{B}r_{D}^{K3\pi}R_{K3\pi}\cos(\delta_{B} + \delta_{D}^{K3\pi} - \gamma)$$

This is not present in $K\pi$ case

 $R_{K3\pi}$ can take value between 0 (incoherent) and 1 (2 body, single amplitude limit) $\delta_{K3\pi}$ is now the average strong phase difference over Dalitz space

 $R_{K3\pi}$ and $\delta_D^{K3\pi}$ can also be measured at ψ " [Atwood, Soni, PRD 68 (2003) 033003] Analogous parameters exist in related channels, eg. $K\pi\pi^0$. CLEO-c has measured coherence factor and strong phase in $K\pi\pi\pi$ and $K\pi\pi^0$.

CLEO-c $K\pi\pi\pi$ & $K\pi\pi^0$

(arXiv:0903.4853 [hep-ex] submitted to journal)

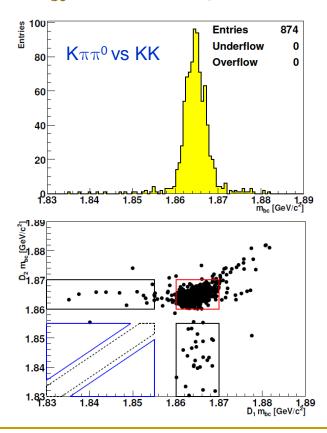
Coherence Factor Analysis

Sensitivity to the $K\pi\pi\pi$ coherence factor and average strong phase difference comes from counting the following classes of double-tagged events:

Double tag Rate	Sensitive to	
$K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ vs $K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	$(R_{K3\pi})^2$	
$\mathbf{K}^{\pm}\pi^{\mp}\pi^{0}$ vs $\mathbf{K}^{\pm}\pi^{\mp}\pi^{0}$	(R _{Kππ} 0) ²	
$K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ vs CP	$R_{K3\pi} cos(\delta^{K3\pi})$	
$K^{\pm}\pi^{\mp}\pi^{0}$ vs CP	$R_{K\pi\pi^0}\cos(\delta^{K\pi\pi^0})$	
$\mathbf{K}^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ vs $\mathbf{K}^{\pm}\pi^{\mp}$	$R_{K3\pi} \cos(\delta^{K3\pi} - \delta^{K\pi})$	
$\mathbf{K}^{\pm}\pi^{\mp}\pi^{0}$ vs $\mathbf{K}^{\pm}\pi^{\mp}$	$R_{K\pi\pi^0}\cos(\delta^{K\pi\pi^0}-\delta^{K\pi})$	
$\mathbf{K}^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ vs $\mathbf{K}^{\pm}\pi^{\mp}\pi^{0}$	$R_{K3\pi}R_{K\pi\pi^0}\cos(\delta^{K3\pi}-\delta^{K\pi\pi^0})$	

Coherence Factor Analysis Event Yields

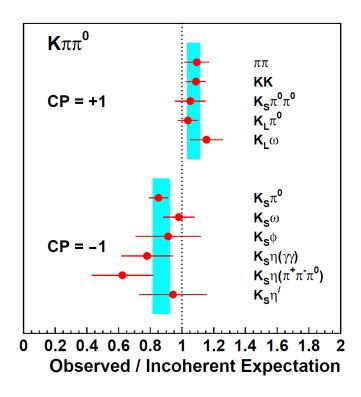
Analysis based on full 818 pb⁻¹ ψ(3770) CLEO-c dataset

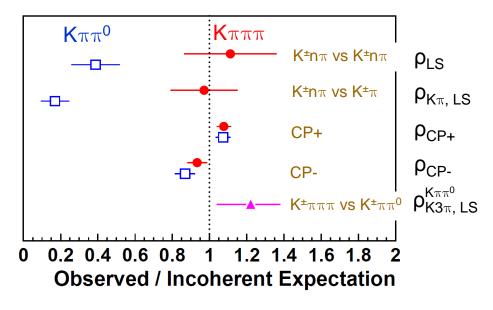

Use 10 separate CP-tags:

CP Tag	$K3\pi$ yield	$K\pi\pi^0$ yield
ΚΚ, ππ	782	1100
$\mathrm{K_S}\pi^0$	705	891
$K_s\omega(\pi^+\pi^-\pi^0)$	319	389
$K_{\mathrm{S}}\pi^0\pi^0$	283	406
$K_S \phi(K^+K^-)$	53	91
$K_{_S}\eta(\{\gamma\gamma,\pi^+\pi^-\pi^0\})$	164	153
$K_S \eta'(\pi^+\pi^-\eta)$	36	61
$K_L \pi^0$	695	1234
$K_L\omega(\pi^+\pi^-\pi^0)$	296	449
Total	3465	4774
CP = 1, CP = -1		

Other classes of double tags are suppressed (but generally very sensitive to physics parameters)

so yields low: eg. 29 $K^{\pm}\pi\pi\pi$ vs $K^{\pm}\pi\pi\pi$ events


Flat background assessed from m_{bc} space; peaking from MC


Results for observables

Calculate ratio of observed number of events, p, to expected number with zero coherence (≡ no quantum-correlations being present)

CP-tag results internally consistent

Results for all observables

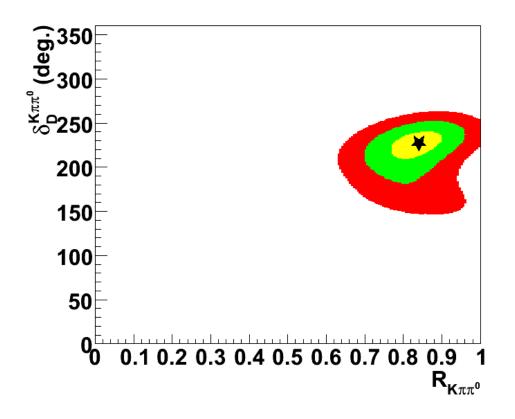
 $K\pi\pi^0$ looks very coherent; $K\pi\pi\pi$ does not (note that expected sign of shift for given parameter value varies between observables)

Results for Observables & Parameter Extraction

	•
Observable	Value ± stat ± syst
$\rho^{K3\pi}_{CP+}$	$1.077 \pm 0.024 \pm 0.029$
$ ho_{CP-}^{K3\pi}$	$0.933\pm0.027\pm0.046$
$ ho_{LS}^{K3\pi}$	$1.112\pm0.226\pm0.102$
$ ho_{K\pi,LS}^{K3\pi}$	$0.971\pm0.169\pm0.062$
$\rho_{CP+}^{K\pi\pi^0}$	$1.073 \pm 0.020 \pm 0.035$
$\rho_{CP-}^{K\pi\pi^0}$	$0.868\pm0.023\pm0.049$
$ ho_{LS}^{K\pi\pi^0}$	$0.388\pm0.127\pm0.026$
$\rho_{K\pi,LS}^{K\pi\pi^0}$	$0.170\pm0.072\pm0.027$
$\rho_{K3\pi,LS}^{K\pi\pi^0}$	$1.221 \pm 0.169 \pm 0.080$

- Systematic for ρ_{CP} dominated by an internal uncertainty associated with normalisation, which is statistical in nature
- Systematics for other observables are small, and dominated by knowledge of BRs

Observables depend on R and δ , as well as ratio of DCS to CF amplitudes, r_D , and the D mixing parameters x and y.

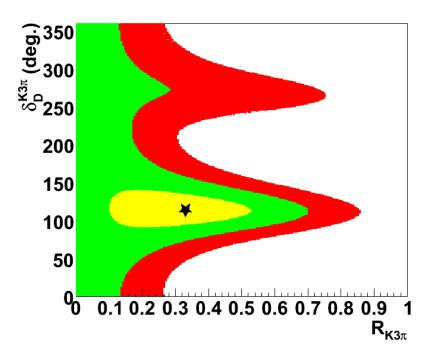

$$\rho_{LS}^{K3\pi} \cong \frac{1 - R_{K3\pi}^2}{1 + \frac{x^2 + y^2}{2(r_D^{K3\pi})^2} - \frac{R_{K3\pi}}{r_D^{K3\pi}} (y \cos \delta_D^{K3\pi} - x \sin \delta_D^{K3\pi})}$$

$$\rho_{K\pi, LS}^{K3\pi} \propto \frac{1 + \left(\frac{r_D^{K3\pi}}{r_D^{K\pi}}\right)^2 - 2\frac{r_D^{K3\pi}}{r_D^{K\pi}} R_{K3\pi} \cos \delta_D^{K3\pi}}{1 + \frac{x^2 + y^2}{2(r_D^{K\pi})^2} - \frac{1}{r_D^{K\pi}} (y \cos \delta_D^{K\pi} - x \sin \delta_D^{K\pi})}$$

$$\rho_{CP\pm}^{K3\pi} \cong 1 \pm \Delta_{CP}^{K3\pi} \text{ where } \Delta_{CP}^{K3\pi} = y - r_D^{K3\pi} R_{K3\pi} \cos \delta_D^{K3\pi}$$

Perform fit to extract R and δ , using external constraints on other parameters

CLEO-c Results for $R_{K\pi\pi^0}$ and $\delta_{\scriptscriptstyle D}^{K\pi\pi^0}$


$$R_{K\pi\pi^0} = 0.84 \pm 0.07$$

$$\delta^{K\pi\pi^0} = (227^{+14}_{-17})^{\circ}$$

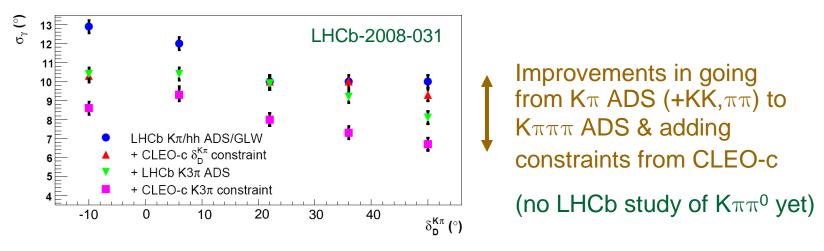
Very coherent (almost at 'two body' limit!)

This is good news for γ measurement as ADS interference term will be large.

CLEO-c Results for $R_{K3\pi}$ and $\delta_{D}^{K3\pi}$

$$R_{K3\pi} = 0.33^{+0.20}_{-0.23}$$
$$\delta_D^{K3\pi} = (114^{+26}_{-23})^{\circ}$$

$$\delta_{\rm D}^{\rm K3\pi} = (114^{+26}_{-23})^{\rm C}$$


Low coherence preferred

 $R_{K3\pi}$ being low means interference term \rightarrow 0, giving rates high sensitivity to r_B, which is very valuable constraint for sister B→DK analyses!

$$\Gamma(B^{-} \to (K^{+}\pi^{-}\pi^{-}\pi^{+})_{D}K^{-}) \propto r_{B}^{2} + (r_{D}^{K3\pi})^{2} + 2r_{B}r_{D}^{K3\pi}R_{K3\pi}\cos(\delta_{B} + \delta_{D}^{K3\pi} - \gamma)$$
badly known

Impact of CLEO-c on LHCb γ Measurement

Expected γ precision at LHCb with 2 fb⁻¹ of data (one year) for ADS modes alone:

Add other measurements, especially B \rightarrow D(K_S π + π -)K, & extrapolate to 10 fb⁻¹

$$\sigma_{\gamma} = 1.9 - 2.7^{\circ}$$
 ...in which B \rightarrow DK methods have a weight of ~70% (variation in number depends on values of phases)

Understanding of D decay properties central to precise measurement of γ !

Conclusions and Outlook

CLEO-c results available for D decays in several quantum-correlated analyses:

- D \to K_{S(L)} $\pi^+\pi^-$: $c_i^{(\cdot)}$ and $s_i^{(\cdot)}$ in 8 bins of equal width in $\Delta\delta$
- D \rightarrow K $\pi\pi\pi$, K $\pi\pi^0$: coherence factor & average strong phase difference
- D→Kπ: strong phase difference

~1/3 \psi(3770) data used

These results provide invaluable input in the γ measurement!

Other studies underway:

- D→K_{S(L)}KK: c_i^(·) and s_i^(·) measurements results soon
- D \rightarrow K_{S(L)} π ⁺ π ⁻ : other binnings being explored
- D \rightarrow K π : full statistics

And possibilities exist for analysis of other channels, eg. $D \rightarrow K_S \pi^+ \pi^- \pi^0$

BES-III should be able to repeat and extend these studies with higher statistics. First $\psi(3770)$ running may occur next year. Estimated production is 5 fb⁻¹ / year.

Backups