

Status of LHCb,c

Sergey Barsuk, LAL Orsay on behalf of the LHCb Collaboration

LHCb detector - single-arm forward spectrometer 10-250 mrad (V), 10-300 mrad (H)

Advantages of charm at LHCb ...

- Precise vertexing and tracking
- Particle ID
- Access to large rapidity range
- → STATISTICS
- ... still, working under ...
- → High multiplicities
- Forward geometry

no full event reconstruction ensured

Originally b-dedicated trigger

difficult to optimize simultaneously for b-physics and prompt charm

Tracks and vertices: VErtex LOcator, Si TT and IT, straw OT

Particle ID: RICH system

2 RICHs and 3 radiators to cover phase space

The experiment is fully installed, commissioning well advanced ...

... no collisions yet \rightarrow cosmics + too short experience with LHC protons.

Cosmics for the tracking detectors

Works for Outer Tracker (similar surface as the Calorimeter) Marginal for Inner Tracker (small), Trigger Tracker (too far), Vertex Locator (small and far)

Trigger with EM and H calorimeters with a high gain to see MIP **Muon trigger** without spatial correlation (no pointing geometry) constraint Readout of consecutive events \rightarrow time alignment, optimizing signal vs. spill-over

Time alignment of Muon stations with cosmics

SB 10

Sector test: VELO tracks in busy TED events

Sector test: VELO space alignment with the TED events

- The detector displacement from metrology usually is less than 10 μm
- Module alignment precision is about 3.4 μm for X and Y translation and 200 μrad for Z rotation

R residuals

2008 Biased Residual Binary Resolution

2006 Test Beam Resolution

Res. [µm] 40 35

30L

25

20

15

Sector test: using VELO tracks for IT, TT space alignment

□ Extrapolation of VELO tracks to IT (7m)

First beam on September 10: low multiplicities or splashes

Beam 1 on collimator: busy tracker

and RICH2 "photon blast"

140k hits / 200k total active area

Hunting for charm ...

 \rightarrow Prompt charm : $c \rightarrow ...$

→ LHCb optimised for *b*-physics

→ Secondary charm : $b \rightarrow c \rightarrow ...$

Order of magnitude higher wrt b-events (generator suggests x7 at E_{CM}=14 TeV)

NB: D⁺ travels ~1 cm !

× BR(B \rightarrow D*[±]X)~0.23 × BR(B \rightarrow D°X) ~0.63 × BR(B \rightarrow D[±]X) ~0.24

So far complete studies only for charm from b-decays \rightarrow extrapolation to prompt charm

Crucial : → Vertex reconstruction → Particle Id ... and TRIGGER Charm 09, 20-22.05.09

SB 16

Trigger

Expected $D^* \rightarrow D^0 \pi$ samples

D*[±] trigger: D* \rightarrow D^o(hh) π , **no RICH information** \rightarrow Sample for physics (after trigger and selection cuts) from b decays per 2 fb⁻¹

~10M K π events available for PID calibration

cf 0.11M KK events at BELLE with 540 fb⁻¹

Below discussed only charm from b decays !

(Mixing and) CPV

Status of

RICH calibration

Mixing parameters from $D^0 \rightarrow K^+K^-$

One of the most sensitive ways to access DD mixing

$$y_{CP} = \frac{\tau(K^-\pi^+)}{\tau(K^+K^-)} - 1$$

 So far no single 5σ measurement
 E.g. Belle PRL 98 (2007) 211803 : y_{CP} = 1.31 ± 0.32 ± 0.25 %

□ LHCb 2 fb⁻¹ ($b \rightarrow c$): $y_{CP} \rightarrow \sigma_{stat} \sim 0.1\%$ (prompt c): x 3 better ? □ LHCb 0.1 fb⁻¹ (prompt c): $y_{CP} \rightarrow \sigma_{stat} \sim 0.15\%$?

CPV from $D^{0} \rightarrow K^{+}K^{-}$

- $\Box \quad \text{CPV via } \mathbf{A}_{\Gamma} \text{ parameter:} \qquad A_{\Gamma} = \frac{\tau(\overline{D}{}^{0} \to K^{-}K^{+}) \tau(D^{0} \to K^{+}K^{-})}{\tau(\overline{D}{}^{0} \to K^{-}K^{+}) + \tau(D^{0} \to K^{+}K^{-})}$
- □ $A_{\Gamma} \le 10^{-3}$ in SM, up to 1% with NP □ HFAG 09: A_{Γ} (D⁰ → K⁺K⁻) = (-1.6 ± 2.3)×10⁻³

■ LHCb 2 fb⁻¹ ($b \rightarrow c$): $A_{\Gamma} \rightarrow \sigma_{stat} \sim 1.1 \times 10^{-3}$ (prompt c): × 3 better ? ■ LHCb 0.1 fb⁻¹ (prompt c): $A_{\Gamma} \rightarrow \sigma_{stat} \sim 1.6 \times 10^{-3}$

Mixing with the WS $D \rightarrow K\pi$

□ Wrong sign: $dN_{ws}/dt \approx e^{-\Gamma^{\dagger}} \times \{ (x'^2 + y'^2)/2 \cdot \Gamma^2 t^2/2 + D^2_{DCS} + D_{DCS} \cdot y' \cdot \Gamma^{\dagger} \}$ Measures x'^2 and y'Log Events / 0.03 ps bin Signal + Background DCS Signal $S/B \sim 0.4$, input for the toy MC \rightarrow Background 10³ Interference LHCb 2 fb⁻¹ ($b \rightarrow c$): Mixino 10² $x'^2 \rightarrow \sigma_{stat} \sim 1.4 \times 10^{-4}$ $y' \rightarrow \sigma_{stat} \sim 1.9 \times 10^{-3}$ 10⁻ n Proper Time (ps) cf: Belle PRL 96 (2006) 151801 (400 fb⁻¹): $x'^2 = 0.018 \pm \frac{0.021}{0.023}$ % $y' = 0.06 \pm 0.40 \%$ BABAR PRL 98 (2007) 211802 (384 fb⁻¹): $x'^2 = -0.022 \pm 0.030 \pm 0.021$ % y' = 0.97 ± 0.44 ± 0.31 % CDF PRL 100 (2008) 121802 (1.5 fb⁻¹): $x'^2 = -0.012 \pm 0.035$ % y' = 0.85 ± 0.76 % Status of Charm 09, 20-22.05.09 SB 20

Rare decays

→ Alexey Petrov

D-decay	Comment	B topological analogue
D₀→hh	Sensitivity to some R-parity violating SUSY models, <i>G.Burdmann Phys.Rev. D66 (2002)</i>	Bs → μμ
D+→X+I+I-	Rate dominated by long distance resonance contribution at $m_{ }=m_{\rho,w,\phi} \rightarrow measure m_{ }^2$ spectrum at $m_{ } \sim m_{\phi}$ and $m_{ } \gg m_{\phi}$	B→K*l⁺l⁻
D°→Vγ	Long distance QCD >> Up-type penguin	B _(S) →Vγ
D₀→hh	$D^0 \longrightarrow P^{\gamma} + P^{+} + P^{\gamma} $	μ^+
\square BR < 10 ⁻¹² in SM, up to 10 ⁻⁶ with NP		
□ Best-to-date: CDF limit BR < 4.7 × 10^{-7} @90%CL with 360 pb ⁻¹		
□ For BR ~ 10 ⁻⁷ and 100 pb⁻¹ with prompt $D^{o} \rightarrow \mu\mu$: >25 events		
Status of <u>LHC</u> D	Charm 09, 20-22.05.09	SB 22

With 1 fb^{-1} :

Status of

Mass measurement via $B_c \rightarrow J/\psi\pi$: ~310 events, $\sigma_{stat}(M) \sim 1.7 \text{ MeV/c}^2$ Best-to-date CDF: 108±15 events, M=6275.6±2.9±2.5 MeV/c² (2.4 fb⁻¹) Lifetime measurement via $B_c \rightarrow J/\psi\pi$: ~360 events, $\sigma_{stat}(\tau) \sim 0.027 \text{ ps}$ Best-to-date DO: 881±80 events, $\tau = 0.448 \pm \frac{0.038}{0.036} \pm 0.032 \text{ ps}$ ($B_c \rightarrow J/\psi\mu X$, 1.3 fb⁻¹)

J/ψ , χ_c , ... production

X,Y,Z spectroscopy: mass, width, properties + search for new states

Prompt production

Proof of power for hadron machine: CDF LHCb : STATISTICS

Prompt production of X(3872) ~84% (at CDF)

Trigger on dimuons from primary vertex, with $m_{\mu\mu}$ around $m_{J/\psi}$ for X(3872), Y(4010), Y(4260) $\rightarrow J/\psi\pi\pi$, around $m_{\psi(25)}$ for Y(4350), Y(4660) $\rightarrow \psi(25)\pi\pi$

X,Y,Z from B decays

BR($B^+ \rightarrow K^+ X(3872) \rightarrow K^+ J/\psi \pi^+ \pi^-$) ~ 8 × 10⁻⁶ BR($B^0 \rightarrow J/\psi K^0{}_s \rightarrow J/\psi \pi^+ \pi^-$) ~ 3 × 10⁻⁴ Angular analysis to disentangle 1⁺⁺ and 2⁻⁺

→ ~40 times less events for B⁺ → K⁺ X(3872) (~10k events/year)

Charged charmonium-like states from B decays BR($\overline{B}^{0} \rightarrow K^{-} Z^{+}(4430) \rightarrow K^{-} \psi(25) \pi^{+} \rightarrow K^{-} \mu^{+} \mu^{-} \pi^{+}) \sim 3 \times 10^{-7}$ BR($B^{0} \rightarrow J/\psi K^{0}{}_{S} \rightarrow J/\psi \pi^{+}\pi^{-} \rightarrow \mu^{+} \mu^{-} \pi^{+} \pi^{-}) \sim 1.7 \times 10^{-5}$ $\rightarrow \sim 60$ times less events for $B^{+} \rightarrow K^{-} Z^{+}(4430)$ (~10k events/year) Status of Charm 09, 20-22.05.09 SB 25

Ongoing study

First year physics

- 2009/2010 is expected to be machine-dependent
- □ Run at reduced CM energy (8-10 TeV ?)
- □ 50ns bunch scheme → reduced spill-over
- □ Expect # of *pp* interactions / BX stable from the start-up onwards → Lumi ~ #bunches
- □ Fill ~2 kHz from day 1.

- Charm appetizer Small # of bunches, min. bias running → collect 2 × 10⁸ events in ~100h → unbiased events, MC tuning, flavour production (2k reconstructed J/ψ)
- 2. Charm antipasti More bunches \rightarrow Trigger focusing on J/ ψ -containing events $\int Ldt \sim 5 \text{ pb}^{-1} \rightarrow \sim 3M J/\psi$

→ prompt vs. detached J/ ψ ; proper time resolution; prompt J/ ψ cross-section; J/ ψ polarization; $\chi_{c1,2}$, $\psi(25)$ production; X(3872); ...

- 3. Charm pasta ∫Ldt ~100 pb⁻¹ → "golden" time for charm studies, large number of signal events for majority of the channels
- 4. Charm dessert $\int Ldt \sim 2 fb^{-1} \rightarrow 2010/2011$

Status of THC

We are looking forward to the LHC machine in blue again ...

Status of

Back-up

Status of LHCb

J/ψ production

- **D** New pseudo-rapidity region, up to ~6, unique (p_T, η) coverage
- Main problem: to distinguish
 A) prompt J/ψ and

B) J/ψ from b-> J/ψ X (BR = 1.16 ± 0.10 %)

 Discriminating variable (simple approximation of b quark proper time):

$$t = \frac{dz}{p_z^{J/\psi}} \times m^{J/\psi}$$

 \square Measure A) and B) in bins of **n**, p_T and cos θ

- Luminosity measurement needed
 - → systematics (and also acceptance, polarization, BR, t model, ...)

Status of THC

J/ψ production

Two μ uons (μ - π separation, ϵ ~90%, mis-ID rate 1.4%) forming a common vertex For one track p_T > 1.5 GeV/c.

X_c production

~30% of J/ ψ come from $\chi_{c1,2} \rightarrow J/\psi \gamma$ [*Tevatron*]

Important observables: \rightarrow fraction of J/ ψ from $\chi_{c1,2}$,

→ relative χc production $R\chi_c = \sigma(\chi_{c2}) / \sigma(\chi_{c1})$

$\psi(25)$ production and polarization

→ Measurement of $\sigma(\psi(2S))/\sigma(J/\psi)$ very clean [most systematics cancel]

Status of CHCP