Charmonium Spectroscopy on the Lattice

Gunnar Bali

Universität Regensburg

Charm 2009

Leimen, 20 May 2009

- The new Charmonia
- Lattice spectroscopy
- Fine structure
- Disconnected quark lines
- Outlook

1974 – 1977: 10 *cc* resonances, 1978 – 2001: 0 *cc*'s

2002 – 2008: \leq 12 new $c\bar{c}$'s found by BaBar, Belle, CLEO-c, CDF, D0

Possible QCD phase diagram: diquarks ?

Hybrid mesons

 $m_c \gg \Lambda_{QCD} \longrightarrow$ Adiabatic and non-relativistic approximations: $H\psi_{nlm} = E_{nl}\psi_{nlm}$, $H = 2m_c + \frac{p^2}{m_c} + V(r)$

Input:
$$\mathcal{L}_{QCD} = -\frac{1}{16\pi\alpha_L}FF + \bar{q}_f(\not D + m_f)q_f$$

$$m_N^{\text{latt}} = m_N^{\text{phys}} \longrightarrow a$$

 $m_\pi^{\text{latt}}/m_N^{\text{latt}} = m_\pi^{\text{phys}}/m_N^{\text{phys}} \longrightarrow m_u \approx m_d$

. . .

Output: hadron masses, matrix elements, decay constants, etc...

Extrapolations:

- **(1)** $a \rightarrow 0$: functional form known.
- **2** $L \to \infty$: harmless but often computationally expensive.
- 3 $m_q^{\text{latt}} \rightarrow m_q^{\text{phys}}$: chiral perturbation theory (χPT) but m_q^{latt} must be sufficiently small to start with.

 $(m_\pi^{
m latt}=m_\pi^{
m phys}$ has only very recently been realized.)

Quenched Lattice: glueballs, charmonia and hybrids

(No "disconnected diagrams" and no sea quarks \rightarrow no mixing $G, c\bar{c}, c\bar{q}q\bar{c}$, no decay !)

First result with sea quarks 04 FNAL+MILC ($n_f \approx 2 + 1$)

Lattice spectroscopy

	name	O_h repr. J^{PC}		state	operator	
	<i>a</i> 0	A_1	0++	χ_{c0}	1	
	π	A_1	0-+	η_c	γ_5	
erators	ρ	T_1	1	J/ψ	γ_i	
le alors	<i>a</i> 1	T_1	1++	χ_{c1}	$\gamma_5\gamma_i$	
	b_1	T_1	1+-	h _c	$\gamma_i \underline{\gamma_j}$	
	$\pi \times \nabla$	$\frac{I_1}{T}$	1+-	h _c	$\gamma_5 \nabla_i$	
$I = 0 \land \dots$	$a_0 \times \nabla$	$\frac{I_1}{T}$	1	J/ψ	∇_i	
$-0, +, \cdots$	$a'_0 \times \nabla$	/ ₁	1-+	exotic	$\gamma_4 \nabla_i$	
$l = 3, 6, \cdots$	$(\rho \times \nabla)_{A_1}$	A_1	0''	χ_{c0}	$\gamma_i \nabla_i$	
- , - ,	$(\rho \times \nabla)_{T_1}$	$\frac{1}{T}$	1 ' ' 2++	χ_{c1}	$\epsilon_{ijk}\gamma_j\nabla_k$	
$l=2,4,\cdots$	$(\rho \times \nabla)_{T_2}$	12	2	<i>χ</i> c2	$s_{ijk}\gamma_j \nabla_k$	
1_121	$(a_1 \times \nabla)_{A_1}$	A_1	0	exotic	$s_{ijk}\gamma_j \vee k$	
$i=1, 3, 4, \cdots$	$(a_1 \times \nabla)_{T_2}$	T_2	2 1-+		$\gamma_5 s_{ijk} \gamma_j \nabla_k$	
$l = 2 3 4 \cdots$	$(D_1 \times V)T_1$	T_1	2+-	exotic	$\gamma_4 \gamma_5 \epsilon_{ijk} \gamma_j \vee k$	
_, _, ,	$a_0 \times D$	1 ₂	2++	exotic	$\gamma_4 D_i$	
	$(a_1 \times D)_{A_2}$ $(a_1 \times D)_{T}$	\overline{T}_{1}	3 1++	24	$\gamma_5 \gamma_1 D_1$	
	$(a_1 \times D)_{T_1}$ $(a_1 \times D)_T$	T_{2}	2++	λc1	$\gamma_{5} S_{IJK} \gamma_{J} D_{k}$	
	$(b_1 \times D)_{I_2}$	A ₂	3+-		$\gamma_{A} \gamma_{E} \gamma_{i} D_{i}$	
	(J1 × D)A2 					

Lattice op

A_1	\rightarrow	$J = 0, 4, \cdots$
A_2	\rightarrow	$J = 3, 6, \cdots$
Ε	\rightarrow	$J = 2, 4, \cdots$
T_1	\rightarrow	$J=1,3,4,\cdots$
T_2	\rightarrow	$J=2,3,4,\cdots$

J-assignment for PC = --J Dudek et al.

Wavefunctions after variational optimization (Coulomb gauge). CE, GB

S Choe et al (QCD-TARO 03): fine splitting $\Delta M = m_{J/\psi} - m_{\eta_c} \; (n_F = 0)$

NRQCD:
$$\Delta M = \frac{1}{6m_c^2} \langle \psi | V_4 | \psi \rangle + \cdots$$

Leading order perturbation theory: $V_4(r) = 8\pi C_F \alpha_s \delta^3(r)$.

ΔM	scale from $r_0 = 0.5$ fm	scale from $1\overline{P} - 1\overline{S}$
Columbia	72(2) MeV	83(??) MeV
CP-PACS	73(1)(4) MeV	85(4)(6) MeV
QCD-TARO	77(2)(6) MeV	89(??) MeV
χ QCD	88(4) MeV	121(6) MeV
JLAB	97(6) MeV	???

JLAB (Dudek et al): $m_c \approx 5\%$ too small !

 χ QCD (Tamhankar et al) + JLAB: only one lattice spacing *a*. χ QCD: *La* < 0.9 fm $\rightarrow 1\overline{P} - 1\overline{S}$ underestimated ?

Y Namekawa et al (PACS-CS, arXiv:0810.2364)

 $a^{-1} \approx 2.2$ GeV from m_{Ω} , 310 MeV > $m_{\pi} \ge 165$ MeV, $Na \approx 2.9$ fm.

Disconnected quark lines ? $(n_f = 0: P \text{ de Forcrand et al (QCD-TARO 04)})$

What about mixing with other I = 0 states?

C Ehmann, GB: $\eta_c \leftrightarrow \eta$ mixing $(n_f = 2)$:

Mixing vs. no mixing:

Gunnar Bali (Regensburg)

Two state potentials GB, H Neff, T Düssel, T Lippert, Z Prkacin, K Schilling

Coupled channel potential model for threshold effects ? Many channels $(D\overline{D}, D^*\overline{D}, D_s\overline{D}_s, D^*\overline{D}^*, \cdots) \Rightarrow$ many parameters!

"Direct" calculation of the spectrum ?

- We have to be able to resolve radial excitations!
- (remember e.g. the very dense 1^{--} sector.)

Required: large basis of test wavefunctions including $c\bar{c}$, $c\bar{q}q\bar{c}$ and $cg\bar{c}$ operators and good statistics.

Outline	The new charmonia	Lattice spectroscopy	Fine structure	Disconnected diagrams	Outlook
Outloo	k				

- First $n_f = 2 + 1$ simulations near physical m_{π} at $a^{-1} \approx 2$ GeV.
- First precision calculations of annihilation and mixing diagrams.
- The continuum limit is important, in particular for the fine structure.
- There will be a lot of progress in sub-threshold charmonium spectroscopy in the next two years.
- Calculation of forces between pairs of static-light mesons for different *S* and *I* is on its way, to qualitatively understand 4-quark binding.
- Study of $c\bar{c} \leftrightarrow c\bar{q}q\bar{c}$, initially for $J^{PC} = 1^{--}$.