Sub Threshold strange hadron production in UrQMD

Jan Steinheimer

22.04.2016

Based on:

J. Steinheimer and M. Bleicher, J. Phys. G **43**, no. 1, 015104 (2016) J. Steinheimer, M. Lorenz, F. Becattini, R. Stock and M. Bleicher, arXiv:1603.02051.

22.04.2016 Based on: J. Steinhe / 21

What is UrQMD?

UrQMD is a microscopic transport model

• Calculates the space-time trajectories of 'real' particles.

What is UrQMD?

- Calculates the space-time trajectories of 'real' particles.
- Particles follow a straight line until they scatter.

What is UrQMD?

- Calculates the space-time trajectories of 'real' particles.
- Particles follow a straight line until they scatter.
- No long range interactions like potentials.

- Bases on point like 'real' hadrons with conserved energy-momentum, quantum numbers.
- Only strong interactions. No electro-weak processes.

- Bases on point like 'real' hadrons with conserved energy-momentum, quantum numbers.
- Only strong interactions. No electro-weak processes.
- Only $2 \leftrightarrow 2$, $2 \leftrightarrow 1$, $2 \rightarrow N$ and $1 \rightarrow N$ interactions allowed.
- Hadrons interact via scattering according to geometrical interpretation of cross sections.
- Resonance decays according to PDG values + guesstimates.

- Bases on point like 'real' hadrons with conserved energy-momentum, quantum numbers.
- Only strong interactions. No electro-weak processes.
- Only $2 \leftrightarrow 2$, $2 \leftrightarrow 1$, $2 \rightarrow N$ and $1 \rightarrow N$ interactions allowed.
- Hadrons interact via scattering according to geometrical interpretation of cross sections.
- Resonance decays according to PDG values + guesstimates.
- Detailed balance. (Violated in string excitations, annihilations and some dacays)

Strange particle production goes ONLY via

- Resonance excitation:

 - \blacktriangleright M+M \rightarrow X

Relevant channels:

- $NN \to N\Delta_{1232}$
- $2 NN \to NN^*$
- $\ \, 0 \ \, NN \to N\Delta^*$
- $NN \to \Delta_{1232} \Delta_{1232}$
- $NN \to \Delta_{1232} N^*$
- $NN \to \Delta_{1232} \Delta^*$
- $\bigcirc NN \to R^*R^*$

Strange particle production goes ONLY via

- Resonance excitation:
 - $N + N \rightarrow X$ $N + M \rightarrow X$
 - $M+M \rightarrow X$

N*(1650)	$\Delta(1232)$
N*(1710)	$\Delta(1600)$
N*(1720)	$\Delta(1620)$
N*(1875)	$\Delta(1700)$
N*(1900)	$\Delta(1900)$
N*(1990)	$\Delta(1905)$
N*(2080)	$\Delta(1910)$
N*(2190)	$\Delta(1920)$
N*(2220)	$\Delta(1930)$
N*(2250)	$\Delta(1950)$
N*(2600)	$\Delta(2440)$
N*(2700)	$\Delta(2750)$
N*(3100)	$\Delta(2950)$
N*(3500)	$\Delta(3300)$
N*(3800)	$\Delta(3500)$
N*(4200)	$\Delta(4200)$
22.04.2016 Based on:	

22.04.2016 Based on: J. Steinhe / 21

6

8 9 10

ூற்றை தொ

 $\sqrt{\frac{4}{s_{NN}}}$ [GeV]

n+n

- Resonance excitation:
 - $N+N \rightarrow X$ \triangleright N+M \rightarrow X
 - $M+M \rightarrow X$
- Annihilation: $B + \overline{B} \to X$

Not relevant at the beam energies considered here

/ 21

Strange particle production goes ONLY via

- Resonance excitation:
 - $N{+}N{\rightarrow} X$
 - \triangleright N+M \rightarrow X
 - $M{+}M{\rightarrow} X$
- Annihilation: $B + \overline{B} \to X$
- String excitations

Not relevant at the beam energies considered here

Strangeness exchange reactions

In addition Strange hadrons may be created in strangeness exchange reactions.

Motivation

Recent measurements on near and below threshold production.

ϕ production

HADES and FOPI reported unexpected large ϕ contribution to the K^- yield.

G. Agakishiev *et al.* [HADES Collaboration], Phys. Rev. C **80**, 025209 Steinher Jan Steinheimer (FIAS) / 21

Motivation

Recent measurements on near and below threshold production.

ϕ production

HADES and FOPI reported unexpected large ϕ contribution to the K^- yield.

Ξ production

 Ξ^- yield, measured in Ar+KCl much larger than thermal model.

Confirmed in p+Nb \rightarrow No Y+Y exchange!!

G. Agakishiev et al. [HADES Collaboration], Phys. Rev. Lett. 103, 132301 (2009) 22.04.2016 Based on: J. Steinhe

Jan Steinheimer (FIAS)

/ 21

Motivation

Recent measurements on near and below threshold production.

ϕ production

HADES and FOPI reported unexpected large ϕ contribution to the K^- yield.

Ξ production

 Ξ^- yield, measured in Ar+KCl much larger than thermal model.

Confirmed in $p+Nb \rightarrow No Y+Y$ exchange!!

Both particles are not well described in microscopic transport models and thermal fits are also not convincing.

G. Agakishiev et al. [HADES Collaboration], Phys. Rev. Lett. 103, 132301 (2009) 22.04.2016 Based on: J. Steinhe

Jan Steinheimer (FIAS)

Does the ϕ have a small hadronic cross section?

- The idea that the ϕ has a small hadronic cross section is not new. A. Shor, Phys. Rev. Lett. 54, 1122 (1985).
- The ϕ would be an important probe of hadronization.

Does the ϕ have a small hadronic cross section?

- The idea that the ϕ has a small hadronic cross section is not new. A. Shor, Phys. Rev. Lett. 54, 1122 (1985).
- The ϕ would be an important probe of hadronization.
- COSY and LEPS experiments have found large nuclear absorption cross sections

M. Hartmann *et al.*, Phys. Rev. C **85**, 035206 (2012) T. Ishikawa *et al.*, Phys. Lett. B **608**, 215 (2005)

The Kaon-Nuclean potential

An example

Comparisons of K^+ production in different size systems has lead to the conclusion, that the EoS of nuclear matter is soft.

C. Hartnack, H. Oeschler and J. Aichelin, Phys. Rev. Lett. **96**, 012302 (2006)

22.04.2016 Based on: J. Steinhe

21

Jan Steinheimer (FIAS)

The Kaon-Nuclean potential

An example

Comparisons of K^+ production in different size systems has lead to the conclusion, that the EoS of nuclear matter is soft.

C. Hartnack, H. Oeschler and J. Aichelin, Phys. Rev. Lett. **96**, 012302 (2006)

Lots of work on strangenss

- P.Koch, B.Müller and J.Rafelski, Phys. Rept. 142, 167 (1986).
- J.Randrup and C.M.Ko, Nucl. Phys. A 343, 519 (1980)
- J.Aichelin and C.M.Ko, Phys. Rev. Lett. 55, 2661 (1985).
- W.Cassing, E.L.Bratkovskaya, U.Mosel, S.Teis and A.Sibirtsev, Nucl. Phys. A 614 , 415 (1997)
- C.Hartnack, H.Oeschler, Y.Leifels, E.L.Bratkovskaya and J.Aichelin, Phys. Rept. 510, 119(2012)
- •

۲

22.04.2016 Based on: J. Steinhe / 21

Jan Steinheimer (FIAS)

First the ϕ

On the probability of sub threshold production

Sub-threshold production in UrQMD

- Fermi momenta lift the collision energy above the threshold.
- Secondary interactions accumulate energy.

On the probability of sub threshold production

Sub-threshold production in UrQMD

- Fermi momenta lift the collision energy above the threshold.
- Secondary interactions accumulate energy.

On the probability of sub threshold production

Sub-threshold production in UrQMD

- Fermi momenta lift the collision energy above the threshold.
- Secondary interactions accumulate energy.

Why not introduce these decays for the less known resonances?

Fixing the $N^* \rightarrow \phi + N$ decay with p+p data

We use ANKE data on the ϕ production cross section to fix the $N^* \to N + \phi$ branching fraction.

A. Sibirtsev, J. Haidenbauer and U. G. Meissner, Eur. Phys. J. A 27, 263 (2006) [arXiv:nucl-th/0512055].

22.04.2016 Based on: J. Steinhe / 21

Fixing the $N^* \rightarrow \phi + N$ decay with p+p data

We use ANKE data on the ϕ production cross section to fix the $N^* \to N + \phi$ branching fraction.

Branching fraction consistent with extracted OZI suppression (from ω/ϕ) Y. Maeda *et al.* [ANKE Collaboration], Phys. Rev. C **77**, 015204 (2008) [arXiv:0710.1755 [nucl-ex]].

Detailed balanca \rightarrow absorption cross section

• $\phi + p$ cross section from detailed balance is very small.

Detailed balanca \rightarrow absorption cross section

- $\phi + p$ cross section from detailed balance is very small.
- Still the transparency ratio is well reproduced. Remember: this is what lead to the 20 mb cross section from ANKE.

Detailed balanca \rightarrow absorption cross section

- $\phi + p$ cross section from detailed balance is very small.
- Still the transparency ratio is well reproduced. Remember: this is what lead to the 20 mb cross section from ANKE.
- Even the shape of the spectra looks good.

Detailed balanca \rightarrow absorption cross section

- $\phi + p$ cross section from detailed balance is very small.
- Still the transparency ratio is well reproduced. Remember: this is what lead to the 20 mb cross section from ANKE.
- Even the shape of the spectra looks good.
- Not 'absorption' of the ϕ , but of the mother resonance.
- Reactions of the type: $N^* + N \rightarrow N'^* + N'^*$ $N^* + N \rightarrow N'^* + N'^*$

where the mass of $N'^* < N*$ so no ϕ can be produced.

When applied to nuclear collisions:

22.04.2016 Based on: J. Steinhe / 21

When applied to nuclear collisions:

- Qualitative behavior nicely reproduced
- Predicted maximum at 1.25 A GeV

When applied to nuclear collisions:

- Qualitative behavior nicely reproduced
- Predicted maximum at 1.25 A GeV
- High energies: too low due to string production
- HADES preliminary results for 1.23 A GeV, see H. Schuldes talk.

22.04.2016 Based on: J. Steinhe / 21

Even centrality dependence works well:

Data from: K. Piasecki et al., arXiv:1602.04378 [nucl-ex].

22.04.2016 Based on: J. Steinhe / 21

Even centrality dependence works well:

- Centrality dependence nicely reproduced.
- Good indicator for multi step production.

Data from: K. Piasecki et al., arXiv:1602.04378 [nucl-ex].

Kaon Potentials

- To constrain the Kaon potentials from kaon spectra one needs to understand the baseline
- For example the ϕ contribution to the $K^-.$

Kaon Potentials

- To constrain the Kaon potentials from kaon spectra one needs to understand the baseline
- For example the ϕ contribution to the K^- .
- But also the general shape of the spectra may depend on the model.

Kaon Potentials

- To constrain the Kaon potentials from kaon spectra one needs to understand the baseline
- For example the ϕ contribution to the K^- .
- But also the general shape of the spectra may depend on the model.

UrQMD results

- K^-/K^+ ratio as function of Kaon energy.

Based on: J. Stei

Kaon Potentials

- To constrain the Kaon potentials from kaon spectra one needs to understand the baseline
- For example the ϕ contribution to the K^- .
- But also the general shape of the spectra may depend on the model.

UrQMD results

- K^-/K^+ ratio as function of Kaon energy.
- Can we make robust quantitative statements?

Based on: J. Steinhe

Now the Ξ

22.04.2016 Based on: J. Steinhe / 21

Jan Steinheimer (FIAS)

How to fix the $N^* \rightarrow \Xi^- + K + K$ decay?

No elementary measurements near threshold. We use p+Nb at $E_{lab} = 3.5$ GeV data $\rightarrow \Gamma_{N^* \rightarrow \Xi + K + K} / \Gamma_{tot} = 3.0\%$

How to fix the $N^* \rightarrow \Xi^- + K + K$ decay?

No elementary measurements near threshold.

We use p+Nb at $E_{\rm lab}=3.5~{\rm GeV}$ data $\rightarrow \Gamma_{N^*\rightarrow \Xi+K+K}/\Gamma_{tot}=3.0\%$

Table: Ξ^- production yield and Ξ^-/Λ ratio for minimum bias p + Nb collision at a beam energy of $E_{\text{lab}} = 3.5$ GeV, compared with recent HADES results

Note:

G. Agakishiev et al., arXiv:1501.03894 [nucl-ex].

How to fix the $N^* \rightarrow \Xi^- + K + K$ decay?

No elementary measurements near threshold.

We use p+Nb at $E_{\rm lab}=3.5~{\rm GeV}$ data $\rightarrow \Gamma_{N^*\rightarrow \Xi+K+K}/\Gamma_{tot}=3.0\%$

Table: Ξ^- production yield and Ξ^-/Λ ratio for minimum bias p + Nb collision at a beam energy of $E_{\text{lab}} = 3.5$ GeV, compared with recent HADES results

Note:

• Branching ratio seems large, however may be contributed to the limited number of heavy states in the model.

G. Agakishiev et al., arXiv:1501.03894 [nucl-ex].

22.04.2016 Based on: J. Steinhe

21

- Ξ[−] yield in Ar+KCl collisions is nicely reproduced
- Consistent with the p+Nb data.
- Indication for Ξ production from non-thermal 'tails' of particle production.

- Ξ[−] yield in Ar+KCl collisions is nicely reproduced
- Consistent with the p+Nb data.
- Indication for Ξ production from non-thermal 'tails' of particle production.
- All other strange particle ratios are also in line with experiment

22.04.2016 Based on: J. Steinhe

/ 21

Predictions for Au+Au at $E_{lab} = 1.23$ A GeV

 Ξ^-/Λ does not decrease much.

22.04.2016 Based on: J. Steinhe / 21

Jan Steinheimer (FIAS)

• We introduced a new mechanism of ϕ and Ξ production in elementary and nuclear collisions, through the decay of heavy resonances.

22.04.2016 Based on: J. Steinhe

21

- We can nicely describe the ϕ and Ξ^- production in elementary and nuclear collisions near and below the ϕ production threshold.
- To successfully describe Ξ^- production in p+Pb and Ar+KCl reactions a large branching fraction of 10% is required.

Backup

Jan Steinheimer (FIAS)

22.04.2016 Based on: J. Steinhe / 21