

Antikaon absorption in pioninduced reactions

Joana Wirth, Jia-Chii Berger-Chen, Laura Fabbietti & Alessandro Scordo

> 3rd Strangeness Workshop - Spring 2016 23.04.2016

K⁰_S Cross-Section

$$\sigma(\pi^- + A \rightarrow K^0 + X) = \sigma_{eff} \cdot A^b$$

$$\sigma_{eff} = 0.87 \pm 0.13 \ mb$$

$$b = 0.67 \pm 0.03$$

$$\pi + A \rightarrow \Phi/K^-K^+ + X$$

$$\pi$$

→ K^0 production scales with the surface of the nucleus in pioninduced reactions

K⁻ in Medium

K⁻ in Medium

σ(K⁻): Production threshold decreases

 K_{s}^{0} properties: Ar + KCl, p + p, p + Nb Agakishiev et al. Phys. Rev. Lett. C82, 044907 (2010) Agakishiev et al. Phys. Rev. Lett. C90, 054906 (2014)

> → A dependence of K⁰ and K⁺ production more under control: no in-medium absorption

σ(K⁻): Larger absorption for larger effective density

 $K^-N \to Y\pi \qquad K^-NN \to YN$

Joana Wirth

K⁻ in Medium

HADES Experiment @ GSI (Darmstadt)

HADES Experiment @ GSI (Darmstadt)

High Acceptance Di-Electron Spectrometer:

- High acceptance for dilepton pairs
- Momentum resolution ≈ 3 %
- Particle identification via dE/dx

Secondary Pion Beam @ 1.7 GeV/c:

- 100 10³ K^+ and 4.2 10³ K^- in π^- + W
- 99.7 10³ K^+ and 6.9 10³ K^- in π^- + C

 $\pi + A \rightarrow \Phi/K^{-}K^{+} + X$

 $\overset{+\mathbf{X}}{\wedge} \quad \frac{K^{-}}{K^{+}}(W) \Big/ \frac{K^{-}}{K^{+}}(C)(\theta, p)$

 $\phi(W)/\phi(C)(\theta)$

Kaon selection

Applied cuts:

- Primary vertex:
 - - 85 < z vertex < 5 mm
 - - 10 < x,y vertex < 10 mm
- Energy loss: $0 < dE/dx_{MDC} < 50$
- Velocity: $0 < \beta < 1$
- Particle identification via dE/dx and p Energy loss and magnetic field correction

Kaon selection

Applied cuts:

- Primary vertex:
 - - 85 < z vertex < 5 mm
 - - 10 < x,y vertex < 10 mm
- Energy loss: $0 < dE/dx_{MDC} < 50$
- Velocity: $0 < \beta < 1$
- Particle identification via dE/dx and p (also for SIM)

Energy loss and magnetic field correction

K⁺ Yield in π^- W

K⁺ Yield in RPC (π ⁻ W)

K⁺ Yield in RPC (π^- W)

K⁺ mass in RPC (π -W)

K⁺ mass resolution in RPC (π^- W)

Joana Wirth

K^- Yield in π^- W

K⁻ Yield in RPC (π - W)

K^{-} Yield in RPC ($\pi^{-}W$)

Ratios of K⁻/K⁺ Ratios

 \rightarrow Evidence of K^{-} disappearance

Φ Signal

Applied cuts:

- Primary vertex: 10 < x,y vertex < 10 mm, 65 < z vertex < 5 mm
- Kaon mass: $450 < M_K < 500 \text{ MeV/}c^2$
- Velocity: $0 < \beta < 1$
- Particle identification via dE/dx and p

Energy loss correction and magnetic field correction applied

Φ Signal in 3 Θ_{lab} Bins

Acc+Eff Corrected Θ_{lab} Spectra of Φ

Correction done with help of GiBUU full scale simulations.

Acc+Eff Corrected Φ Ratios W/C

Both yields are normalized to record number of events: $\pi^{-}+C$: 128.8 10⁶, $\pi^{-}+C$: 158 10⁶

- → Clear suppression in W compared to C
- \rightarrow Due to K⁻ absorption in W? Due to in-medium effects?

Summary & Outlook

Summary:

- Systematic mass shift in EXP and SIM data
- Evidence of **K**⁻ disappearance in all two observables (p,Θ)
- Clear Φ suppression in W compared to C

Outlook:

- New dE/dx selection separately for EXP and SIM data
- Acceptance and efficiency correction
- Final results: ratios of ratios, cross sections

Thank you for your attention!