Do Kaons Follow Poisson?

Marek Kirejczyk

Education and Training Division
National Centre for Nuclear Research Świerk and
Faculty of Physics, Warsaw University

Plan

Why?

How?

What we have got?

What do we plan?

How to get Poisson distribution

- Binomial d. converges to Poisson d. for $\mathrm{n} \rightarrow \infty$ with $n p=$ const
- Particle number within grand canonical ansamble follows Poisson d. But is this the case for kaons? Strangeness is strictly conserved, charge-like!
They should NOT be Poissonians!

Quest Leaders

- Nucl. Phys. A 697 (2002) 546-562 In this paper we [S. Jeon, V. Koch, K. Redlich, and X.-N. Wang] will demonstrate that the fluctuations of rare particles is a very sensitive probe of the degree of equilibration reached in these [heavy ion] collisions.

Scaled Factorial Moment

- Definition (rank 2): $\quad F_{2}=\frac{\langle N(N-1)\rangle}{\left\langle N^{2}\right\rangle}$
- $\mathrm{F}_{2}($ Poisson d. $)=1$
- F_{2} (chemical equilibrium for ,charge'-conserving particles) $=1 / 2$
- $F_{2}(0$ or 1$)=0$
- F_{2} does not change if d . is folded with binomial

Event, id

What we got...

- $F_{2}=1.55 \pm 0.12$ error estimate: sample split
- F_{2} greater then 1 is not good...

Work in progress: h- case

- Distribution of negative pion multiplicity is wider then Poisson as well...
- Perhaps we have got mixed sources
(centralities)

Todo list

- Redo the analysis for the separate centralities
- Try to add K0s
- Estimate the influence of mis-identified K

Thank you

Danke

Dziękuję
Grazie
Спасибо
Hvala
谢谢

Merci

Dankon

고맙습니다
Gratias
Mulțumesc
Дякую
Köszönöm

