# Partial Wave Analysis of Strangeness Production at GeV Energies

Laura Fabbietti, Steffen Maurus

Robert Münzer, Shuna Lu,

Technische Universität München Excellence Cluster – Origin of the Universe



# **Strangeness Production**



# **Strangeness Production**



| Resonance | JP   | Mass ( $GeV/c^2$ ) | Γ ( $MeV/c^2$ ) |
|-----------|------|--------------------|-----------------|
| N*(1650)  | 1/2- | 1.655              | 0.150           |
| N*(1710)  | 1/2+ | 1.710              | 0.100           |
| N*(1720)  | 3/2+ | 1.720              | 0.250           |
| N*(1875)  | 3/2- | 1.875              | 0.220           |
| N*(1880)  | 1/2+ | 1.870              | 0.235           |
| N*(1895)  | 1/2  | 2.090              | 0.090           |
| N*(1900)  | 3/2+ | 1.900              | 0.0250          |

# **Strangeness Production**



р

Final State Interaction Aka: scattering length and effective range

Conversion Processes (Cusp Effect)

Σ

### Partial Wave Analysis

#### **Bonn-Gatchina PWA Framework**

A. Sarantsev et.al., Eur.Phys J A 25 2005

Cross-section Decomposition

$$d\sigma = \frac{(2\pi)^4 |A|^2}{4|k|\sqrt{s}} d\phi(P, q_1, q_2, q_3), \qquad P = k_1 + k_2$$

A : reaction amplitude  $A = \sum_{\alpha} A^{\alpha}_{tr}(s) \cdot Q^{in} \cdot A_{2b}(\alpha) \cdot Q^{out}$ 

 $Q^{in}, Q^{out}$  : spin-momentum operator of initial and final state

 $A_{2b}$  : resonant: Breit-Wigner (for N\* and Cusp)

non-resonant: Effective range approximation, dependent on scattering parameters  $A_{tr}^{\alpha}(s) = (a_1^{\alpha} + a_3^{\alpha}\sqrt{s})e^{ia_2^{\alpha}} : a_1^{\alpha}$  constant amplitude  $a_2^{\alpha}$  phase  $a_3^{\alpha}$  energy dependent amplitude

 $d\phi(P, q_1, q_2, q_3)$ : invariant three-particle phase space

# Multi-PWA

## Data Sets

| Experiment | E <sub>B</sub> [GeV] | pK⁺Λ<br>Statistics | Status                                    |
|------------|----------------------|--------------------|-------------------------------------------|
| COSY-TOF   | 1.96                 | ~160k              | In Preparation (not used in the analysis) |
| DISTO      | 2.15                 | 121 k              | Available                                 |
| COSY-TOF   | 2.16                 | 43 k               | Available                                 |
| COSY-TOF   | 2.16                 | ~90k               | In Preparation (not used in the analysis) |
| DISTO      | 2.5                  | 304 k              | Available                                 |
| DISTO      | 2.85                 | 424 k              | Available                                 |
| FOPI       | 3.1                  | 0.9 k              | Single PWA                                |
| HADES      | 3.5                  | 21 k               | Single PWA                                |

HADES PLB 742 (2015) 242-248.

# **COSY-TOF** Spectrometer



 $\sigma_{MM(pK)} = 16 MeV/c^2$ 

fiber hodoscope fiber hodoscope "starttorte" doublesided ring-µ-strip veto LH target 2cm scintillator Si-µ-strip scintillator scintillator 100 rings 2x96 fibers 2x192 fibers 2x12 wedges 128 segments

intermediate

## **DISTO Spectrometer**



# **Combined Analysis**

- 1. Solution for HADES+FOPI+DISTO25
  - Start values for the global fit
  - Energy Range wide enough for energy dependence
  - High energy for higher N\*-Resonances
- 2. Include Stepwise further data sample
  - Cosy216 / DISTO21 / DISTO28

## Parameter Scan

#### Initial pp states up to F wave Include different N\* Resonances

|           | Solution                         | Α      | В      | С      | D      | E      |
|-----------|----------------------------------|--------|--------|--------|--------|--------|
|           | Loglike                          | -67142 | -67018 | -66878 | -66504 | -66405 |
|           | $\frac{\chi^2}{ndf}(ndf = 4547)$ | 9,50   | 9,98   | 9,98   | 10,01  | 10,34  |
|           | N*(1650)                         | +      | +      | +      | +      | +      |
|           | N*(1710)                         | +      | +      | +      | +      | +      |
|           | N*(1720)                         | +      | +      | +      | +      | -      |
|           | N*(1875)                         | +      | +      | -      | -      | +      |
|           | N*(1880)                         | +      | +      | +      | +      | +      |
|           | N*(1895)                         | +      | +      | +      | +      | +      |
|           | N*(1900)                         | -      | +      | +      | -      | +      |
| Cusp Wave | e $\Sigma N (0^+, 1^+)$          | +      | +      | +      | +      | +      |

### DISTO@2.14 GeV



### COSY-TOF@2.16 GeV



Preliminary

13 13

OSY

### DISTO@2.5 GeV



14 14

collaboration

### DISTO@2.85 GeV



15 15

collaboration

FOPI



16 16

#### HADES



HADES

#### HADES - WALL



HADES

### **Total Cross Section**



Value:

$$\sigma_{pK\Lambda} = C_1 \left( 1 - \frac{S_0}{\left(\sqrt{S_0} + \epsilon\right)^2} \right)^{C_2} \left( \frac{S_0}{\left(\sqrt{S_0} + \epsilon\right)^2} \right)^{C_3} \qquad \begin{array}{c} C_1 = 4.03 \pm 0.57 \ 10^2 \\ C_2 = 1.49 \pm 0.04 \\ C_3 = 1.43 \pm 0.39 \end{array}$$

# **Branching Ratio**

|                        | Mass [GeV/c <sup>2</sup> ] | Width [GeV/c <sup>2</sup> ] | Γ <sub>ΛΚ</sub> /Γ <sub>Αll</sub> % |
|------------------------|----------------------------|-----------------------------|-------------------------------------|
| N(1650)S <sub>11</sub> | 1.655                      | 0.150                       | 3-11                                |
| N(1710)P <sub>11</sub> | 1.710                      | 0.200                       | 5-25                                |
| N(1720)D <sub>13</sub> | 1.720                      | 0.250                       | 1-15                                |
| N(1875)D <sub>13</sub> | 1.875                      | 0.220                       | 4 <b>±</b> 2                        |
| N(1880)P <sub>11</sub> | 1.870                      | 0.235                       | 2 <b>±</b> 1                        |
| $N(1895)S_{11}$        | 1.895                      | 0.090                       | 18 <b>±</b> 5                       |
| N(1900)P <sub>13</sub> | 1.900                      | 0.250                       | 0-10                                |

### **Cross Section**



Non Resonant-Resonant: 20%-80%

## **Initial State**



#### Final State Interaction in PWA

$$A_{2b}^{\beta} = \frac{\sqrt{s_i}}{1 + \frac{1}{2}r^{\beta}q^2 a_{p\Lambda}^{\beta} + iqa_{p\Lambda}^{\beta}q^{2L}/F(q,r^{\beta},L)}$$

 $a_{p\Lambda}^{\beta}$  Scattering Length For I=0

 $r^{\beta}$  Effective Range of System

 $\begin{aligned} \alpha_s &= -1.43 \ \pm 0.36 \ \pm 0.09 \ fm & \alpha_t = -1.88 \ \pm 0.38 \ \pm 0.10 \ fm \\ r_s &= 1.31 \ \pm 0.24 \ \pm 0.16 \ fm & r_t = 1.04 \ \pm 0.78 \ \pm 0.15 \ fm \end{aligned}$ 

| Source                | ${}^{1}S_{0} a_{\Lambda-p} [\text{fm}]$ | ${}^{1}S_{0} r_{\Lambda-p}$ [fm] | ${}^{3}S_{1} a_{\Lambda-p} $ [fm]       | ${}^3S_1 r_{\Lambda-p} \text{ [fm]}$ | $< a_{\Lambda-p} > [fm]$            |
|-----------------------|-----------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|-------------------------------------|
| This work             | $-1.43 \pm 0.36 \pm 0.09$               | $1.31 \pm 0.24 \pm 0.16$         | $-1.88 \pm 0.38 \pm 0.10$               | $1.04 \pm 0.78 \pm 0.15$             |                                     |
| NLO <sup>2</sup> [15] | -2.91                                   | 2.78                             | -1.54                                   | 2.72                                 | -1.88 <sup>3</sup>                  |
| LO <sup>2</sup> [15]  | -1.91                                   | 1.40                             | -1.23                                   | 2.13                                 | -1.4 <sup>3</sup>                   |
| [16]                  | $-1.8^{+2.3}_{-4.2}$                    | -                                | $-1.6^{+1.1}_{-0.8}$                    | -                                    | -                                   |
| [17]                  | -                                       | -                                | -                                       | -                                    | $-1.25 \pm 0.08 \pm 0.03$           |
| [18]                  | -                                       | -                                | $-1.31^{0.32}_{-0.49} \pm 0.3 \pm 0.16$ | -                                    | $-1.233 \pm 0.014 \pm 0.3 \pm 0.12$ |

[15] Haidenbauer et al.Nuclear Physics A,915,24-58 (2013)

[16] G. Alexander et a., Phys. Rev. 173,1452 (1968).

[17] M.Roeder et al., Eur. Phys. J. A49, 157 (2013)

[18] Hauenstein 2014

# Data Sets for Cusp Analysis

| Experiment | E <sub>B</sub> [GeV] | pK <sup>+</sup> Λ<br>Statistics | Status                                    |
|------------|----------------------|---------------------------------|-------------------------------------------|
| COSY-TOF   | 1.96                 | ~160k                           | In Preparation (not used in the analysis) |
| DISTO      | 2.15                 | 121 k                           | Available                                 |
| COSY-TOF   | 2.16                 | 43 k                            | Available                                 |
| COSY-TOF   | 2.16                 | ~90k                            | In Preparation (not used in the analysis) |
| DISTO      | 2.5                  | 304 k                           | Available                                 |
| DISTO      | 2.85                 | 424 k                           | Available                                 |
| FOPI       | 3.1                  | 0.9 k                           | Single PWA                                |
| HADES      | 3.5                  | 21 k                            | Single PWA                                |

# Cusp Effect

Effect close to the  $\Sigma N$  threshold

Coupled Channel Interaction

 $p + p \rightarrow p\Lambda + K^{+}$  $p + p \rightarrow N\Sigma + K^{+}$  $\rightarrow p + \Lambda + K^{+}$ 

N $\Sigma$ :  $p\Sigma^0$  / n $\Sigma^+$ 

The  $\Sigma$  and N are expected to be in a relative s-wave state.

spin-parity of the N  $\Sigma$  system is either  $J^{P} = O^{+}$  or  $1^{+}$ .

Cosy-TOF Analysis:

S.Abd El-Samad, Eur.Phys.J A49(2013)



Solid line: Full MC simulation Shaded areas: phase-space distributions

# BG-PWA + Breit-Wigner approach



Data from: M. Roeder et al., Eur. Phys. J. A 49, 157 (2013)

# BG-PWA + Flatté approach

#### The Flatté parameterization:

$$\frac{d\sigma_{p\Lambda}}{dm_{p\Lambda}} \approx \frac{C * m_R * \sqrt{\Gamma_{p\Lambda}\Gamma_o}}{\left|m_R^2 - m_{p\Lambda}^2 - im_{p\Lambda}(\Gamma_{p\Lambda} + \Gamma_{p\Sigma})\right|^2}$$

$$m_R \quad \text{Mass of resonance}$$

$$\Gamma \quad \text{Width of resonance}$$

$$m_{p\Lambda} \quad \text{Invariant massof } p\Lambda$$

$$\Gamma_{p\Lambda} = g_{p\Lambda} * q_{p\Lambda} \quad \Gamma_{p\Sigma} = g_{p\Sigma} * q_{p\Sigma}$$

$$g_{p\Lambda}, g_{p\Sigma} \quad \text{Coupling constant squared}$$

$$q_{p\Lambda}, q_{p\Sigma} \quad \text{c.m. momentum}$$

$$q_{p\Sigma} = i * \frac{\sqrt{\left(\left(m_{\Sigma} + m_p\right)^2 - m_{p\Sigma}^2\right) * \left(m_{p\Sigma}^2 - (m_p - m_{\Sigma})^2\right)}}{2m}$$

 $2m_{p\Sigma}$ 





# BG-PWA + Flatté approach

#### Combined data analysis



Final coupling constants:  $g_{N\Sigma} = 1.55 \pm 0.08 \times 10^{-2}$ ,  $g_{p\Lambda} = 0.30 \pm 0.03 \times 10^{-2}$ Threhold mass value from the fit:  $m_R = 2.13 \pm 0.006$  GeV/c<sup>2</sup>

# Summary and Outlook

- Combined Analysis for COSY & DISTO & HADES & FOPI completed for N\*
- Systematical Analysis performed
- Excitation Function for N\* and pKL extracted
- Scattering Length p- $\Lambda$  separate for Singlet and Triplet
- Cusp Wave: preliminary studies on 4 data set
- Paper 1) is being Finalized at the Moment (N\*)
- Estimation of the global upper limit for ppK-
- Global analysis including the cusp with Flatte'