

Charged kaon and φ Production in Au+Au Collisions at 1.23 AGeV measured with HADES

Heidi Schuldes for the HADES collaboration

Outline

- Introduction
 - HADES mission
 - Charged kaon and φ production in the SIS18 energy regime
- Au + Au Measurement with HADES
 - Beam time specifications
 - HADES performance
- Results
 - Centrality dependence and comparison to other experiments
 - Comparison to phenomenological models
 - φ / K⁻ what do we learn about K⁻ production
- Summary

The HADES Mission

Beams from SIS18: pions, protons & nuclei, E_{kin}=1-2 AGeV

- Detailed study of matter properties at highest μ_B with rare and penetrating probes: di-leptons and strange hadrons
- Studying role of baryonic resonances for particle production

The HADES Mission

Beams from SIS18: pions, protons & nuclei, E_{kin}=1-2 AGeV

- Detailed study of matter properties at highest μ_B with rare and penetrating probes: di-leptons and strange hadrons
- Studying role of baryonic resonances for particle production

The HADES Mission

Beams from SIS18: pions, protons & nuclei, E_{kin}=1-2 AGeV

- Detailed study of matter properties at highest µ_B with rare and penetrating probes: di-leptons and strange hadrons
- Studying role of baryonic resonances for particle production

Strangeness Production at SIS Energies

Experimental results and interpretation on charged kaon production

K⁺ and K⁻ show similar A_{part} dependence

(KaoS)

Förster et.

- Inverse slope of K⁻ systematically below K⁺
- "Strangeness exchange mechanism dominant for K⁻ production"

"Later freeze-out of K⁻ compared to K⁺ due to coupling to baryons"

"Strangeness production in HIC is very different from that in elementary interaction"
Phys.Rept. 510 (2012) 119-200

р

К·

۸

Strangeness Production at SIS Energies

Sizeable ϕ production

- 18% of measured K⁻ originate from φ-decays (HADES Ar+KCl @ 1.76 AGeV, confirmed from FOPI Ni+Ni and Al+Al @ 1.9 AGeV)
- Feed-down explains lower effective temperatures of K⁻ and changes conclusion on in-medium potential (not taken into account before)
- φ-meson one of the main players for understanding of K⁻ production

The ultimate test: Au+Au at 1.23 AGeV (Vs=2.41 GeV)

Subthreshold strangeness production in heavy system

Production channel	$E_{Beam,thr}[GeV]$	\sqrt{s}_{thr} [GeV]	$\sqrt{s}_{AuAu} - \sqrt{s}_{thr}$ [GeV]
$NN \rightarrow NK^+\Lambda$	1.58	2.55	-0.14
$NN \rightarrow NNK^+K^-$	2.49	2.86	-0.45
$NN ightarrow NN \phi$	2.59	2.9	-0.49

- Heaviest system at low energy
 - > All strange hadrons produced far below NN-threshold
 - Sensitive to in-medium effects
 - Fast detector to collect unprecedented high statistics for multi-differential analysis of rare probes (and as many other observables as possible)

The ultimate test: Au+Au at 1.23 AGeV

Subthreshold strangeness production in heavy system

DAQ upgrade: high trigger rates of up to 8 kHz
 7.4 x 10⁹ events recorded

Trigger on 40% most central collisions $> <A_{part} > = 191 \pm 7$

Multi differential analysis of pions and protons

High statistics (1 out of 30 days)

First measurement of K^2 and ϕ at such low energies

 K^+ : Vs_{AuAu} - Vs_{thr} =-0.14 GeV **φ**: Vs_{AuAu} - Vs_{thr} =-0.49 GeV K: Vs_{AuAu} - Vs_{thr} =-0.45 GeV Number of counts 10⁸ 10⁸ 10¹ counts/(4 MeV/c²) 000 000 000 000 000 Au+Au 1.23 A GeV $\begin{array}{l} \mu = 1018.9 \; \text{MeV/c}^2 \\ \sigma = 5.2 \; \text{MeV/c}^2 \end{array}$ φ S/B = 0.5 π^{-} π^+ Signif=18.5 ³He d/⁴He 10⁶ K⁺ 300 10⁵ 200 K 10⁴ Ē 100 10³ 980 1000 1020 1040 1060 1080 1100 1120 1140 1160 0 960 500 1500 2000 -500 0 1000 $M_{K^+K^-}$ [MeV/c²] Mass / Z [MeV/c²]

Results

K⁺ Production

Acceptance at mid-rapidity down to low transverse mass

- Boltzmann and/or blast wave parameterization to extrapolate to unmeasured transverse mass regions
 - Effective temperature
 - Rapidity density distribution
- Extrapolation to unmeasured rapidity regions with Gaussian parameterization

K⁻ Production

Acceptance at mid-rapidity down to low transverse mass

- Boltzmann and/or blast wave parameterization to extrapolate to unmeasured transverse mass regions
 - Effective temperature
 - Rapidity density distribution
- Extrapolation to unmeasured rapidity regions with Gaussian parameterization

φ Production

Acceptance at mid-rapidity down to low transverse mass

- Boltzmann parameterization to extrapolate to unmeasured transverse mass regions
 - Effective temperature
 - Rapidity density distribution
- Extrapolation to unmeasured rapidity regions with Gaussian parameterization

K⁻ / K⁺ ratio

Comparison to KaoS and centrality dependence

K⁻ / K⁺ constant as a function of centrality

K⁻ / K⁺ ratio

Centrality dependence and comparison to KaoS

- K⁻ / K⁺ constant as a function of centrality
- K⁻ / K⁺ ratio follows energy dependence as seen by other experiments
- Linear increase with kinetic beam energy

Effective temperatures of charged kaons

Effective temperature of K⁻ systematically below K⁺

Effective temperature of kaons increases with beam energy and system size

φ / K⁻ ratio Excitation function

* 40% most central

- $\phi/K^{-} = 0.61 \pm 0.27$
 - > ~30% of all measured K⁻ from ϕ feed-down
 - How strong is the contribution from kaon pair production?

ϕ / K⁻ ratio

Excitation function in comparison to SHM

Trend expected from SHM for small R_c

φ / K⁻ ratio

Excitation function in comparison to UrQMD (tuned)

- Trend expected from SHM for small R_c
- Predicted from UrQMD (tuned) when including new decay channels from high mass baryonic resonances (tuned to match elementary data)₂₁

φ / K⁻ ratio What do we learn about K⁻ production?

2 component PLUTO cocktail simulation:

- Thermal ϕ ->K⁺K⁻T = 103 MeV
- Thermal $K^{-}T = T_{K+} = 105 \text{ MeV}$
- Measured φ/K⁻ ratio

φ / K⁻ ratio What do we learn about K⁻ production?

 High contribution from φ feed down can explain lower inverse slope parameter of K⁻ spectrum (T_{eff} = 82 ± 9 MeV) in comparison to the one of K⁺ (T_{eff} = 105 ± 3 MeV)

φ / K⁻ ratio What do we learn about K⁻ production?

- High contribution from φ feed down can explain lower inverse slope parameter of K⁻ spectrum (T_{eff} = 82 ± 9 MeV) in comparison to the one of K⁺ (T_{eff} = 105 ± 3 MeV)
- Measured rapidity distribution nicely reproduced by cocktail

Centrality dependence of multiplicities

- Multiplicities increase towards more central collisions more than linear with M[~]A_{part}^α
- α comparable within errors to KaoS and FOPI results for higher beam energies (α_{K+} =1.34 ± 0.16, α_{K-} =1.22 ± 0.27, α_{ϕ} = 1.7 ± 0.5)
- Sensitive to multi particle interaction
- Comparison to transport models and other strange hadrons
- See Timos talk

Summary

 Measurement of close to complete set of subthreshold produced open and hidden strange hadrons in Au+Au collisions 1.23 AGeV

Summary

- Measurement of close to complete set of subthreshold produced open and hidden strange hadrons in Au+Au collisions 1.23 AGeV
- "Strangeness exchange mechanism dominant for K⁻ production"
- "Later freeze-out of K⁻ compared to K⁺ due to coupling to baryons"
- "Strangeness production in HIC is very different from that in elementary interaction"

Summary

- Measurement of close to complete set of subthreshold produced open and hidden strange hadrons in Au+Au collisions 1.23 AGeV
- "Strangeness exchange mechanism dominant for K⁻ production"
- "Later freeze-out of K⁻ compared to K⁺ due to coupling to baryons"
- "Strangeness production in HIC is very different from that in elementary interaction"
- φ / K⁻ = 0.61 ± 0.27
- Lower effective temperature and rapidity spectrum of K⁻ can be reproduced by two component model simulation
- UrQMD (tuned with elementary cross-sections) predicts rise of φ / K⁻ ratio towards lower energies

The HADES Collaboration

Thank you for your attention!

Backup

Proton Production

Wide phase space coverage

dN/dy [1/evt]

10

Efficiency * acceptance

Invariant mass φ

Reconstruction of neutral hadrons

Background suppression

- **d**₁: dist. primary particle track prim. Vertex
- **d**_v: dist. prim. vertex decay vertex
- **d**₂: min. dist. prim. vertex daughter, track
- **d**₃: min. dist. prim. vertex daughter, track
- \mathbf{d}_t : distance of closest approach of daughter particles

$\Delta\beta$: opening angle

 T_{chem} consistent with T_{kin} obtained from Siemens-Rasmussen fits to proton transverse mass spectra

Comparison

Effective temperatures of charged kaons

φ / K⁻ ratio Centrality dependence

- ϕ/K^{-} ratio almost constant as function of centrality
- Similar trend observed from FOPI for Ni+Ni @ 1.9 AGeV

K⁺ Production

Centrality dependent

K⁻ Production

Average Boltzmann <-> Siemens-Rasmussen -> Rapidity distribution

K⁻ Production

Less phase space bins -> Boltzmann fit not perfectly constrained

Average Boltzmann <-> Siemens-Rasmussen -> Rapidity distribution

φ Production

- (Small) systematic error on mt-spectrum from difference of signal due to different mixed event normalization region
- 0-20% most central σ_{Gauss} unphysical result (much too broad) -> fixed on σ(0-40%)