Measuring Hiperon Dalitz decays with PANDA & HADES

Jacek Biernat

The Menu

- Motivation
- Experimental setup
- Analysis
- Comparison with HADES simulation results
- Conclusions

Electromagnetic structure of baryons

- Dalitz decays N^{*} → Ne+e- probe electr-magnetic structure of baryons-> Form Factors
- Nucleon em.FF, Resonance Transition FF

Radiative hyperon decays

Very strong model dependency (quark models) of BR(γ)
 related to quark structure of excited states, in particular quark
 correlation effects

see E.Kaxiras, J Moniz, M.Soyeur PRD32(1985) 695:

 $\Lambda(3/2-) \rightarrow \Lambda(1/2+) \gamma / \Lambda(3/2-) \rightarrow \Sigma(1/2+) \gamma$ (isospin changing) $\Lambda(1/2-) \rightarrow \Lambda(1/2+) \gamma / \Lambda(1/2-) \rightarrow \Sigma(1/2+) \gamma$? (baryon vs pentaquark) !

- Measured BR ($\Lambda\gamma$) are large! (comparable to $\Delta \rightarrow N\gamma$)
- Hyperon states are narrow !

Results on hyperon Form Factors in time-like region

 Electromagnetic Form Factors (eFF) contain information about hadron charge and currents distributions. For J>1/2 there are 3 eFF (usually G_M,G_E,G_C)

Annihilation experiments : e+e- \rightarrow hyp anty-hyp ($q^2 > 4^*m_{hyp}^2$)

• eFF sensitive to hyperon structure (for example di-quark correlations)

• Are eFF for hyperons equivalent to their counterpartners in baryon sector $-N^*$, Δ (SU(3)-symmetry)?

• Measured eFF (CLEO) are larger by factor 10 from early predictions based on VDM

Closed circles : $G_E = G_M$, Open circles : $G_E = 0$

Di-quark correlations

- Λ⁰ (I = 0) and ∑⁰ (I = 1) have the same quark content |uds > but the obtained results show a difference in the G_m value
- it is important to note that only u and d quarks carry isospin

Two-body (fermion) correlations are known to play an important role in many aspects of physics, ranging from Cooper pairs in superconductivity, to pairing interactions in nuclear physics. Diquarkquark models of nucleons have been proposed to explain many observations in hadron physics, particularly the observed G_M (timelike) / G_M (spacelike) ≈ 2 for the proton.

Recently, Wilczek and colleagues [17] have drawn attention to the fact that "it is plausible that several of the most profound aspects of low-energy QCD dynamics are connected to diquark correlations." Wilczek goes on to actually state that

- "The Λ is isosinglet, so it features the good diquark [ud], while Σ , being isotriplet, features the bad diquark (ud)."
- "the good diquark would be significantly more likely to be produced than the bad diquark", and that "this would reflect in a large Λ/Σ ratio."

http://www.epj-conferences.org/articles/epjconf/pdf/2015/14/epjconf_icnfp2014_03033.pdf

Dalitz decays

- Dalitz decays; for example $\Lambda^{3/2-}(1520) \rightarrow \Lambda^{1/2+}$ e+e- probe etransitionFF in time like region at low Q² = (4m_I; m_{$\Lambda(1520)$} m_{Λ}) –complementary to annihilation experiments
 - Predictions based on VDM shows rich structure due to intermediate vector meson states ρ,ω,φ..
 for example R. Williams et. al. PRC48(1993)1381 →

- As compared to Dalitz decays of baryon resonances (for example counterpartner decay N(1520) ^{3/2-} → p^{1/2+} e+e-) are easeier to identify because hyperons are narrow states
- PANDA & HADES can measure
- Hyp*->Hyp γ (radiative decays), Dalitz decays into leptons and muons and hadronic decays as well !

 a^2 (GeV²)

Dalitz decays - formalism

Generally we can express differentia decay width of such transition as:

$$\frac{d\Gamma}{dM} = "\text{QED}" \otimes eTFF(Q^2 = M^2)$$

where "QED" parts accounts for description of point like particles with given spin, parity eTFF are Electromagnetic transition FF which depends on lepton inv. mass (M) and contain information on hyperon structure

"QED" part has been calculated for various baryonic tranistions in M.I. Krivouchenko et.al Ann.Phys.296(2002)299 , M. Zetenyi and G. Wolf Phys.Rev.C67(2003)044002 (arxiv:02020471)

$$d\Gamma(N^* \to Ne^+e^-) = \Gamma(N^* \to N\gamma^*)M\Gamma(\gamma^* \to e^+e^-)\frac{dM^2}{\pi M^4}$$
$$M\Gamma(\gamma^* \to e^+e^-) = \frac{\alpha}{3}(M^2 + 2m_e^2)\sqrt{1 - \frac{4m_e^2}{M^2}}$$

$$\Gamma(N_{(\pm)}^* \to N\gamma^*) = \frac{9\alpha}{16} \frac{(l!)^2}{2^l(2l+1)!} \frac{m_{\pm}^2 (m_{\mp}^2 - M^2)^{l+1/2} (m_{\pm}^2 - M^2)^{l-1/2}}{m_*^{2l+1} m^2} \left[\left(\frac{l+1}{l} \left| G_{M/E}^{(\pm)} \right|^2 + (l+1)(l+2) \left| G_{E/M}^{(\pm)} \right|^2 + \frac{M^2}{m_*^2} \left| G_C^{(\pm)} \right|^2 \right).$$

M. Krivoruchenko for $J \ge 3/2 \pm$ transitions

eTFF

Example of $\Lambda(1520)^{3/2} \rightarrow \Lambda^{1/2+} |+|^{-1/2+}$

DalitzK(x) dΓ/dM 10⁻⁶ 10.7 10-8 10⁻⁹ 0.1 0.2 0.3 0.4 0.5 0.6 M [GeV]

• "QED" forumla with constant FF . FF values adjusted to restore known radiative decay width of $\Lambda(1520)$ $\Gamma(\Lambda(1520)->\Lambda\gamma)=132$ keV

I – electrons I – muons

Dashed line – effect of simple eTFF of the "dipole" form : $1/(1 - (M/0.71)^2)$ Effect is most visible at high masses

Integrated $\Gamma_{\Lambda e^+e^-} \cong 1 \; \text{keV} \; (\text{BR= 6.8e-5})$

Note that $\Gamma_{\Lambda e+e-} / \Gamma_{rad} \cong 1/132 \cong \alpha$

PANDA: Anti-Proton ANnihilation at DArmstadt (450 physicists, 17 countries) future experiment at new international FAIR facility at GSI (German national lab for heavy ion research near Darmstadt)

High-intensity anti-proton beam on internal pellet/cluster target.

- Average production rate: $2 \times 10^{7/\text{sec}}$;
- Beam momentum 1.5 ... 15 GeV/c; $\Delta p/p$ as good as 10⁻⁵;
- Luminosity up to 2×10^{32} cm⁻²s⁻¹.

Study of QCD with Antiprotons

- Charmonium Spectroscopy;
- Search for Exotics; Hadrons in Medium;
- Nucleon Structure; Hypernuclear Physics.

Particle identification essential

- Momentum range 200 MeV/c 10 GeV/c.
- Several PID methods needed to cover entire momentum range.
- dE/dx, EM showers, Cherenkov radiation in forward & target spectrometer configuration.

Particle Identification at PANDA

Particle Identification at PANDA

Particle Identification at PANDA

PID in simulation

• The parametrization was produced as follows:

$$p(k) = \frac{\prod_i p_i(k)}{\sum_j \prod_i p_i(j)}$$

where the product with index "i" runs over all selected sub detectors and the sum with index "j" over the particle types e, μ , π , K and p.

above 200 MeV/c !

Eff elec to pass e_id cuts at prob>0.80

Background study

- The background contribution will be originating from $\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$
- There is a probability to miss identify pions as electrons, simulations of PID were produced to show this effect

$\Lambda(1520)$ reconstruction

particle		Fraction	form 4π
lambda MC Reco		7%	
lambda MC PID		0.65%	
particlo	noakn	osition	sigma
particle	peak p	osition	sigma
particle lambda MC Reco	peak p 1.522	osition	sigma 0.05

particle	peak position	sigma
lambda MC Reco	1.504	0.062
lambda MC PID	1.5	0.043

A cut on the $\Lambda(1520)$ Inv Mass from 1.5 GeV/c² to 1.67 GeV/c²

particle	mean	sigma	Fraction form 4π
lambda epem PID	1.508	0.060	0.36%
lambda pipim PID	1.49	0.23	1.16e-9 %

Signal to background ratio

Low luminosity mode

 $L = 2 * 10^{31} / cm^2 * s$

18/24h

• The e⁺ e⁻ signal was parametrized with the

Zeteni & Wolf formula and scaled to the BR = $6.8*10^{-5}$

• The $\pi^+\pi^-$ was scaled to BR = 0.1

High luminosity mode

 $L = 2 * 10^{32} / \text{ cm}^2 \text{ *s}$

180 / 24 h

- $\overline{p} p \rightarrow \Lambda(1520)\overline{\Lambda}(1520)(stable) \rightarrow e^+e^-\pi^-p$
- $\overline{p} p \rightarrow \Lambda(1520)\overline{\Lambda}(1520)(stable) \rightarrow \pi^+\pi^-\pi^-p$

Branching ration 6.8 * 10⁻⁵

 $\sigma = 43 \ \mu b^*$

The HADES spectometer

• Detector geometry full azimuthal range covered, 6 sectors polar angle: 16°<θ<84°

• **Tracking** Superconducting coils, toroidal field 24 Mini Drift Chambers

• **Particle identification (e, p, K)** RICH, MDC, TOF, TOFINO, Shower (RPC)

• Resolutions $\Delta M\omega/M\omega \sim 2.1\%$ at ω peak $\Delta p/p \sim 2-3\%$ for proton and π

Planed Upgrade :

•RICH (hadron blind) with new PMT's
•New Daq
•ECAL (form γ tagging)
•FW detector (straw tube + TOF)

Current HADES

"Future" (2018) HADES

	10 ⁸ p/s	5*10 ⁵ π/s	
	Proton Beam	Pion Beam	
HADES only			
Carbon Target	52/day	0.2/day	
Hydrogen Target	13.2/day	0.2/day	
HADES and FW			
Carbon Target	128.3/day	0.5/day	
Hydrogen Target	32.6/day	0.7/day	

Improved DAQ (~200 KHZ) – factor 5 for pp ٠ $(\text{luminosity} \sim 4-6x \ 10^{31} \ 1/(\text{s}^{*}\text{cm}^{2}))$

Imrpoved RICH (gain for e+e- -factor 5), + FW ٠ detector (gain ~2) = gain 10 ~

Total Gain 50 !~

Conclusions

PANDA:

•There is a factor 10 difference between signal and background

• $\Lambda(1520)$ e+ e- reconstruction rates are low.

HADES:

•Obtained production rates are promising (especially p+C)

•Planed upgrade will increase the reconstruction rate by factor 50 and enable gamma tagging (ECAL)

Backup Slides

$\Lambda(1520)$ reconstruction

particle	mean	sigma
lambda epem Reco	1.523	0.05
lambda pippim RECO	1.4	0.049

particle	mean	sigma
lambda epem Reco	1.508	0.062
lambda pipim RECO	1.622	0.043

Missing mass

Electrons/Positrons

[₀] ⊖

Λ^0 reconstruction

A cut on the $\Lambda(1520)$ Inv Mass from 1.5 GeV/c² to 1.67 GeV/c²

particle	Fraction form 4π
Signal Reco	26280
Signal PID	3300

Signal e+ e-

Symulacja

- anti- proton collisions (beam momentum 4 GeV/c) with proton target
- 0.9 M events simulated in 4π
- Two channels included in simulation

Reconstruction rates

Particle	Reconstructed [%]
e+/e-	71%
π+/π-	47%
proton/ anti-proton	49%