

FEE2

Progress in RPC-FEE development

First FAIR FEE Workshop October 11-13, 2005 GSI,Dermetedt FEE status (March 2005) CBM collaboration meeting March 9-12, 2005

1. For the actual design, the connection with the RPC detector is a critical point. The 16 coaxial lines must be impedance matched to detector and FEE ends to prevent reflections.

2. With 1 detector (32 channels) or 2 detectors (64 channels) the beam tests have confirmed a stable and reliable work of the whole system. With 5 detectors (160 channels), the November 2004 FOPI beam tests have shown a system instability and now we work to fix this problem.

CAN BE USED A PRIVATE CHIP?

3.The actual level of performances is obtained with discrete elements and the critical parts are IC top on the Market: MAXIM9601(500ps comp),GALI -S66(Advanced Silicon Techn.), DC-3GHz Amp., 2.7dB NF, 20dB Gain.
4. It is very promising the DIFFERENTIAL pick-up of the signal and the use of an 110 Ohms cheap flat cable – Major Changes in Input stage of FEE.
5. Very attractive and effective: The test of NINO chip for ToF-ALICE.

FEE status (October 2005)

- 1. The tests of 160 channels (1 RPC super module) during a FOPI beam test in August 2005 have shown that the system stability has been improved.
- 2. The "crash" in two FEE-plates, caused by a HV sparks in the detector, which destroyed all "first cell amplifiers" (32 pcs) imposes a special attention for the improvement of the input protection efficiency.
- 3. A new RPC-FEE PCB has been designed, around the NINO chip, for comparative tests with our actual solution.
- 4. In simulations we try to predict the dependence of time resolution on different detector parameters (signal amplitude,rise time, fall time) or FEE parameters (noise, amplifier bandwidth, gain, threshold level).

RPC-FEE NINO

RPC-FEE_NINO

Basic components of a Timing Channel

" WALK "

L CLEAN SIGNAL APPLIED TO DISCRIMINATOR

NOISY SIGNAL APPLIED TO DISCRIMINATOR

Simulation set-up

Noise File

Noise Evaluation

"Walk" and Sigma versus: UINP, Amplifier BW, Detector Rise Time Detector signal is Step with variable Rise Time, Noise=3uV, THR=100m/

"Walk" and Sigma versus: UINP, Amplifier BW, Noise=3uV Detector Rise Time Detector signal is Step with variable Rise Time

"Walk" and Sigma versus: UINP, Amplifier BW, Detector Rise Time

Sigma depend linear to Noise

Sigma versus UINP and THRESHOLD for two Noise values

FEEI TIME RESOLUTION

Low Gain, different Thresholds

FEE2 TIME RESOLUTION

FOPI

different Thresholds

Sigma versus UINP, THRESHOLD and GAIN

Dependence to BW and Signal Rise Time

Measurements

Comparative Dependence to BW and Signal Rise Time for : Resistive Plate Chamber, PC and SC Diamonds

We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (HadronPhysics,contract number RII3-CT-2004-506078).