

FEE for Nuclear Spectroscopy at FAIR

1st FAIR FEE Workshop 11th-13th Oct 2005

lan Lazarus NPG, CCLRC Daresbury

- Detectors and FEE for Gamma-ray spectroscopy
- Detectors and FEE for Charged Particle spectroscopy
- Detectors in some of the larger NUSTAR experiments
- Examples of FEE- DESPEC Implantation Detector
- Examples of FEE- EXL recoil detector
- FEE ASIC meeting report
- Common FEE architecture

• Detectors and FEE for Gamma-ray spectroscopy

- Detectors and FEE for Charged Particle spectroscopy
- Detectors in some of the larger NUSTAR experiments
- Examples of FEE- DESPEC Implantation Detector
- Examples of FEE- EXL recoil detector
- FEE ASIC meeting report
- Common FEE architecture

Gamma-ray spectroscopy

Excite a nucleus. Then watch...

- Detector Requirements:
 - Good stopping power (density)
 - Good energy resolution (usually)
 - Good position resolution often needed too
- Detector materials:
 - Ge for best resolution
 - Scintillators (CsI, BGO, NaI) for price or timing
- FEE Requirements:
 - Energy resolving (0.1% over wide dynamic range)
 - As well as E, need T and often X,Y,Z position.
 - Low Noise
 - Good accuracy, low drift
 - High throughput rate (limited by filtering)

Nuclear Spectroscopy Instrumentation in Europe prior to FAIR

RISING, GSI

Euroball

JUROGAM, CLARA, LNL GREAT, JYFL

Radioactive beam spectroscopy

EXOGAM, SPIRAL, Ganil

Segmentation
Encapsulation
Position determination from pulse shape analysis

MINIBALL, RexIsolde, GSI

•Gamma-ray tracking TMR EU collaboration AGATA

Typical Ge Detectors for observing gamma-rays

The scattering problem...

Compton Shielded Ge

€ _{ph}	~ 10%	
N _{det}	~ 100	0 00
Ω~40%		$\theta \sim 8^{\circ}$

large opening angle means poor energy resolution at high recoil velocity.

Problems: wasting scattered gammas, solid angle

Solutions: track the scattered gammas in a Ge shell with no solid angle wasted with shields.

Ge	<u>I racking</u>	Array
ε _{ph}	~ 50%	
N _{det}	~ 100	
Ω~8	80%	$\theta \sim 1^{\circ}$

Combination of:

- segmented detectors
- •digital electronics
- •pulse processing
- tracking the γ-rays

Interaction - Reconstruction Mechanisms

~ 100 k	keV ~1 MeV	~ 10 MeV	γ-ray energy	
Photoelectric	Compton Scat	tering Pa	Pair Production	
 Εγ θ1 1 	$0 \\ E_{\gamma_0} \\ E_{\gamma_1} \\ E_{\gamma_1} \\ E_{\gamma_1} \\ E_{\gamma_2} \\ $	$\begin{bmatrix} 3 \\ e_3 \\ E_{\gamma_2} \\ \theta_2 \end{bmatrix} \xrightarrow{E\gamma}$	511 Εγ-1022 511	
Isolated hits	Angle/Ener	gy F	attern of hits	
Probability of interaction depth	$E_{\gamma'} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_0 c^2} (1 - \frac{E_{\gamma}}{m_0 c^2})}$	$\overline{\cos\theta}$	$E_{1st} = E_{\gamma} - 2 \text{ mc}^2$	

Reconstruction efficiencies are limited by : Position resolution; Short range scattering; Compton profile.

AGATA (Advanced GAmma Tracking Array)

Fund high-

 $4\pi \gamma$ -array for Nuclear Physics Experiments at European accelerators providing radioactive and high-intensity stable beams

C*

- 180 large volume 36-fold segmented Ge crystals in 60 triple-clusters
- Digital electronics and sophisticated Pulse Shape Analysis algorithms allow
- Operation of Ge detectors in position sensitive mode $\rightarrow \gamma$ -ray tracking

AGATA

(Advanced GAmma Tracking Array)

Schematic of the Digital Electronics and Data Acquisition System for AGATA

15 Ge (555 channel) demonstrator 2007

- Detectors and FEE for Gamma-ray spectroscopy
- Detectors and FEE for Charged Particle spectroscopy
- Detectors in some of the larger NUSTAR experiments
- Examples of FEE- DESPEC Implantation Detector
- Examples of FEE- EXL recoil detector
- FEE ASIC meeting report
- Common FEE architecture

- Detector Requirements:
 - Energy measurement
 - Energy loss (delta-E)
 - Full energy (E)
 - Tracking
 - Beam
 - recoil fragments
 - Reaction products
 - Charge
 - Mass
 - Time of flight
- Detecting proton, alpha, LCP, or heavy ions

- Detector Types:
 - Si (DSSD, microstrip) SiLi
 - Scintillators (various from basic to exotic)
 - Gas
 - ionisation chambers,
 - PPAC,
 - MWPC
 - micropattern (GEM, micromegas, ...)
 - Active Target/TPC
 - magnetic spectrometers for selection

- FEE Requirements:
 - Low Noise
 - Low threshold (e.g. tiny signals from thin Si)
 - Good accuracy, low drift, good timing
 - Very large dynamic range

Total Data Readout Novel triggerless data acquisition eliminates common dead time VXI Shaping CFDs 5000 amplifiers ADCs 4000 or SACRE Ę 3000 Jer . ts 2000 õ Е 1000 v Е 0 N 0 100 200 300 400 500 600 700 Gamma-ray energy (keV) 4500 4000 3500 keV 3000 per 2500 D Counts E 2000 R 1500 1000 500 0 10ns timestamp 6.0 6.5 7.0 7.5 8.0 8.5 Alpha particle energy (MeV) 9.0 5.5 9.5

I.H. Lazarus et al., IEEE TNS 48 (2001) 567

Recoil Decay Tagging (GREAT) Software Trigger

- Detectors and FEE for Gamma-ray spectroscopy
- Detectors and FEE for Charged Particle spectroscopy
- Detectors in some of the larger NUSTAR experiments
- Examples of FEE- DESPEC Implantation Detector
- Examples of FEE- EXL recoil detector
- FEE ASIC meeting report
- Common FEE architecture

The high-energy branch of the Super-FRS:

A universal setup for kinematical complete measurements of

Reactions with Relativistic Radioactive Beams

Kinematically complete measurements:

- · detection of forward light particles emitted from the projectile (momenta measured)
- · excitation energy of projectile residue, momentum (angular) correlations

HISPEC DESPEC

- Detectors and FEE for Gamma-ray spectroscopy
- Detectors and FEE for Charged Particle spectroscopy
- Detectors in some of the larger NUSTAR experiments
- Examples of FEE- DESPEC Implantation Detector
- Examples of FEE- EXL recoil detector
- FEE ASIC meeting report
- Common FEE architecture

AIDA for DESPEC- the concept

Concept and the detector

- Super FRS Low Energy Branch (LEB)
- Exotic nuclei energies ~50-150MeV/u
- Implanted into multi-plane DSSD array
- Implant decay correlations
- Multi-GeV DSSD implantation events
- Observe subsequent p, 2p, α , β , γ , β p, β n ... decays
- Measure half lives, branching ratios, decay energies ...

- 6" wafer-10cm x 10cm area
- 1mm wafer thickness
- Integrated components
 - a.c. coupling polysilicon bias resistors
 - ... important for ASICs
- Series strip bonding (3 together)

AIDA for DESPEC- segmentation

DSSD Segmentation

We need to implant at high rates *and* to observe implant – decay correlations for decays with long half lives.

DSSD segmentation ensures average time between implants for given x, y quasi-pixel >> decay half life to be observed.

- Implantation profile
 - $\sigma_x \sim \sigma_y \sim 2$ cm $\sigma_z \sim 1$ mm
- Implantation rate (8cm x 24cm) ~ 10kHz, ~kHz per isotope (say)
- Longest half life to be observed ~ seconds

Implies quasi-pixel dimensions ~ 0.5mm x 0.5mm

Segmentation also has instrumentation performance benefits

AIDA for DESPEC- Instrumentation

Instrumentation

Why use of Application Specific Integrated Circuit (ASIC) technology?

- •Large number of channels required (8 x (128+(3x128))= 4096)
- •Limited available space
- •Cost

Outline ASIC Specification

- Selectable gain: low 20GeV FSR high 20MeV FSR
- Noise σ ~ 5keV rms.
- Selectable threshold: minimum ~ 25keV @ high gain (assume 5σ)
- Integral and differential non-linearity
- \bullet Autonomous overload recovery ${\sim}\mu s$
- Signal processing time <10µs (decay-decay correlations)
- Receive timestamp data
- Timing trigger for coincidences with other detector systems

DSSD segmentation reduces input loading of preamplifier and enables excellent noise performance.

1 of the 16 channels in the DESPEC Implantation Detector ASIC (shown with external FPGA and ADC)

128 Channel FEE Card for DESPEC

16 ch ASIC 16 bit ADC

128 detector signals in; 1 data fibre out

Estimated size: 80x220mm, Estimated power 25W per 128ch (800W total)

- Detectors and FEE for Gamma-ray spectroscopy
- Detectors and FEE for Charged Particle spectroscopy
- Detectors in some of the larger NUSTAR experiments
- Examples of FEE- DESPEC Implantation Detector
- Examples of FEE- EXL recoil detector
- FEE ASIC meeting report
- Common FEE architecture

NUSTAR EXL electronics.

Detectors-ASIC cards- approxADC cards- 1750560000 channels17500 ASICs on 1750 cardsADCs on 219 cardsDSSD and SiLi(32 channels/ASIC)(320 channels/ADC)

- Detectors and FEE for Gamma-ray spectroscopy
- Detectors and FEE for Charged Particle spectroscopy
- Detectors in some of the larger NUSTAR experiments
- Examples of FEE- DESPEC Implantation Detector
- Examples of FEE- EXL recoil detector
- FEE ASIC meeting report
- Common FEE architecture

Small group (CCLRC & CEA Saclay) discussed EXL, R3B DESPEC, HISPEC and SPIRAL 2.

Found 3 FEE ASICs needed (so far) for NUSTAR:

- 1. Fast recovery after implantation of ion in DSSD Si to measure decay in the same pixel. (DESPEC)
- 2. EXL CsI calorimeters covering energy range 300keV to 500MeV. 13k channels needed.
- 3. EXL/R3B Si strip and SiLi detector ASIC. Normal Si processing chain of preamp, shaper, mux or ADC, timing. Add PSD too. Maybe 2 ASIC solution?

Why collaborate on ASICs and FEE?

- Limited ASIC manpower- don't waste it.
- Limited FEE and DAQ manpower too.
- Avoid duplication of design effort where 2 experiments need a similar ASIC
- Common software for slow control and DAQ (reduced software effort for experiments)
- Compatibility between experiments
- Independent design reviews (increase the probability of a working ASIC).

Actions/decisions:

- 1. Up to Jun 2006: Make physicists aware of these discussions about ASICs and collect the outline specs as they emerge from draft TDRs to look for synergy.
- 2. Find NUSTAR ASIC designers and talk to them!
- 3. ASIC Technology lifetimes- the NP (& HEP) market is so tiny as to have no influence on the lifetime if ASIC processes. Just use best guess. (CCLRC & CEA both use AMS 0.35um CMOS process for analogue.)
- 4. ASIC design cycle (3 iterations) takes 3-4 years. Start soon with 12 months of consultation and specification.
- 5. Design a system, not just an ASIC (or FEE card).

- Detectors and FEE for Gamma-ray spectroscopy
- Detectors and FEE for Charged Particle spectroscopy
- Detectors in some of the larger NUSTAR experiments
- Examples of FEE- DESPEC Implantation Detector
- Examples of FEE- EXL recoil detector
- FEE ASIC meeting report
- Common FEE architecture

Schematic of a NUSTAR experiment

Flexibility from standard interfaces

- Common clock distribution and timestamp control method (synchronisation, heartbeats and resets)
- Data output format- 1st generation use fibre 10G Ethernet?
- Slow control- common interface (Ethernet/Soap???)
- On board processing- too early for device, maybe can now choose Type= FPGA and family=Xilinx?
- Power: 48V with local conversion
- Board size and format- doesn't matter (match to detector?)

DESPEC Si Implantation detector within common FEE and DAQ

- Wide variety of requirements in NUSTAR.
 - Some (e.g. LASPEC) need just a crate of NIM or CAMAC and PC, no need for common FEE or DAQ.
 - Large systems e.g. EXL plans over 0.5M channelsshould consider common DAQ and FEE.
- Large systems- forced to use ASICs by space constraints and cost (e.g. DESPEC, EXL).
- Limited resources so look for common ground in
 - FEE
 - ASICs
 - DAQ
- Design a **system**; don't work in isolation and hope!

Presentation includes pictures from other people.

Thanks to:

- •John Simpson (CCLRC),
- •Tom Davinson (University of Edinburgh)
- •Robert Page (University of Liverpool)
- •Roy Lemmon (CCLRC)
- •Marielle Chartier (University of Liverpool)

NUSTAR FEE diagrams result from discussions with •Haik Simon (GSI)

- •Lolly Pollacco (CEA Saclay)
- •Roy Lemmon (CCLRC)