

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

The PANDA Experiment

High Precision Hadron Physics at FAIR

Lars Schmitt

GSI, Darmstadt

First FAIR FEE Workshop, October 2005

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

- Introduction
- Physics Program

2 PANDA Apparatus

- Overview
- Highlights
- PANDA DAQ and Trigger

PANDA

• anti-Proton ANnihilations at DArmstadt

- New experiment at FAIR
- Storage ring HESR for antiprotons at 1.5-15 GeV/c

• Physics topics:

- Charmonium spectroscopy
- Search for exotic hadrons in the charm sector
- Charm mesons in nuclear matter
- Open charm physics
- Hypernuclei

PANDA

- anti-Proton ANnihilations at DArmstadt
- New experiment at FAIR
- Storage ring HESR for antiprotons at 1.5-15 GeV/c

• Physics topics:

- Charmonium spectroscopy
- Search for exotic hadrons in the charm sector
- Charm mesons in nuclear matter
- Open charm physics
- Hypernuclei

PANDA

- anti-Proton ANnihilations at DArmstadt
- New experiment at FAIR
- Storage ring HESR for antiprotons at 1.5-15 GeV/c

• Physics topics:

- Charmonium spectroscopy
- Search for exotic hadrons in the charm sector
- Charm mesons in nuclear matter
- Open charm physics
- Hypernuclei

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

PANDA

- anti-Proton ANnihilations at DArmstadt
- New experiment at FAIR
- Storage ring HESR for antiprotons at 1.5-15 GeV/c

• Physics topics:

- Charmonium spectroscopy
- Search for exotic hadrons in the charm sector
- Charm mesons in nuclear matter
- Open charm physics
- Hypernuclei

Spectroscopy

Spectroscopy with antiprotons

- $p\bar{p}$ machine allows $\Delta E \lesssim 100$ keV vs. $\Delta E \sim 10$ MeV in e^+e^-
- \rightarrow obtain *m* and Γ with high precision
- e^+e^- produces only $J^{PC} = 1^{--} (\gamma)$
- pp̄ accesses all states

Charm spectroscopy

- Charmonium system
- The Positronium of QCD
- Charm hybrids
- cc-states narrow, understood
- Little interference between cc
 cc g and cc
 cc-states
- Mass 4–4.5 GeV, $c\bar{c}g$ narrow, $\sim \sigma(\bar{p}p \rightarrow c\bar{c})$
- Charm meson spectroscopy

Mesons and Exotics

Spectroscopy

Spectroscopy with antiprotons

- *pp̄* machine allows Δ*E* ≤ 100 keV vs. Δ*E* ~ 10 MeV in *e*⁺*e*⁻
- \rightarrow obtain *m* and Γ with high precision
- e^+e^- produces only $J^{PC} = 1^{--} (\gamma)$
- pp̄ accesses all states

Charm spectroscopy

- Charmonium system
- The Positronium of QCD
- Charm hybrids
- cc-states narrow, understood
- Little interference between cc
 cc cc states
- Mass 4–4.5 GeV, $c\bar{c}g$ narrow, $\sim \sigma(\bar{p}p \rightarrow c\bar{c})$
- Charm meson spectroscopy

Mesons and Exotics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Nuclear Matter

Charm in the Medium

- Mesons in nuclear matter
- Masses change in nuclei
- D-mass lower
- Enhanced charmonium states due to lower DD threshold
- J/Ψ absorption in nuclei

Hypernuclei

- 3rd dimension in nuclear chart
- Study interactions of nucleons in the nuclear potential
- PANDA: Double Hypernuclei
- ΛΛ interaction in nucleus

Nuclear Matter

Charm in the Medium

- Mesons in nuclear matter
- Masses change in nuclei
- D-mass lower
- Enhanced charmonium states due to lower DD threshold
- J/Ψ absorption in nuclei

Hypernuclei

- 3rd dimension in nuclear chart
- Study interactions of nucleons in the nuclear potential
- PANDA: Double Hypernuclei
- ΛΛ interaction in nucleus

Overview

Antiproton Beam

- Momentum 1.5 15 GeV/c
- Cooled $\bar{p} \colon \, \delta p/p \sim 10^{-4} 10^{-5}$
- ${\small \bullet}~~2\times 10^7/s$ production, $\sim 10^{11}$ stored

Overview

Antiproton Beam

- Momentum 1.5 15 GeV/c
- Cooled $\bar{p}: \ \delta p/p \sim 10^{-4} 10^{-5}$
- $2 \times 10^7/s$ production, $\sim 10^{11}$ stored

Internal Targets

- Luminosity $10^{31} 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- Proton targets: pellets, cluster jet
- Nuclear targets: wires, foils

Overview

Target Spectrometer: Solenoid

- Tracking: MVD, STT or TPC
- PID: DIRC, TOF, muon chambers
- EMC: PbWO crystals

Overview

Target Spectrometer: Solenoid

- Tracking: MVD, STT or TPC
- PID: DIRC, TOF, muon chambers
- EMC: PbWO crystals

Forward Spectrometer: Dipole

- Tracking: MDC
- Gas RICH, TOF, muon chambers
- Shashlyk calorimeter

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 = つへで

Tracking

Micro Vertex Detector

- ATLAS/CMS type hybrid silicon pixels
- Barrel + forward disks
- 5 M pixels + 350 k strips
- 5 layers

Tracking

Micro Vertex Detector

- ATLAS/CMS type hybrid silicon pixels
- Barrel + forward disks
- 5 M pixels + 350 k strips
- 5 layers

Time Projection Chamber

- 1.2 m length, NeCO₂ mixture
- Continuous readout via GEM and 100k pads (2×2 mm²)
- PID via dE/dx

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

PID and Calorimetry

DIRC Detector

- Quartz radiator rods
- Internal reflection of
- 2D readout: (x, y) or (ϕ, t)

PID and Calorimetry

DIRC Detector

- Quartz radiator rods
- Internal reflection of
- 2D readout: (x, y) or (ϕ, t)

Electromagnetic Calorimeter

- 19000 PbWO crystals
- $\Delta E \sim 1.6\%/\sqrt{E}$
- Temperature $-(25\pm0.1)^{\circ}C$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Requirements

Physics Requirements

- Rare events, tiny cross sections, small deviations
- High precision
- High interaction rate
- Very high data rates

Basic Rate Requirements

- I0 MHz interaction rate
- Raw rates $\lesssim 200 \text{ GB/s}$
- Data logging $\lesssim 200~\text{MB/s}$
- Small event size \lesssim 8 kB

Functional Requirements

- Wide physics range \rightarrow high flexibility
- Parallel measurements
- High selectivity

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Requirements

Physics Requirements

- Rare events, tiny cross sections, small deviations
- High precision
- High interaction rate
- Very high data rates

Basic Rate Requirements

- I0 MHz interaction rate
- Raw rates $\lesssim 200 \text{ GB/s}$
- Data logging $\lesssim 200 \text{ MB/s}$
- Small event size \lesssim 8 kB

Functional Requirements

- Wide physics range \rightarrow high flexibility
- Parallel measurements
- High selectivity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Requirements

Physics Requirements

- Rare events, tiny cross sections, small deviations
- High precision
- High interaction rate
- Very high data rates

Basic Rate Requirements

- I0 MHz interaction rate
- Raw rates $\lesssim 200 \text{ GB/s}$
- Data logging $\lesssim 200 \text{ MB/s}$
- Small event size \lesssim 8 kB

Functional Requirements

- $\bullet \quad \text{Wide physics range} \rightarrow \text{high flexibility}$
- Parallel measurements
- High selectivity

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Sampling Readout

Continuous Sampling

- All channels are digitized continuously, free running, unbiased readout
- Each detector can contribute to event selection
- No dedicated trigger detector

Technical Implications

- Massive data reduction as early as possible
- Flexible selection by programmable nodes
- Very high bandwidth

Data Reduction: Convert digital hits to physical coordinates

- Noise reduction, zero suppression
- Signal time determination
- Clusterisation and coordinate evaluation
- Pattern recognition (rings, tracklets, ...)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Sampling Readout

Continuous Sampling

- All channels are digitized continuously, free running, unbiased readout
- Each detector can contribute to event selection
- No dedicated trigger detector

Technical Implications

- Massive data reduction as early as possible
- Flexible selection by programmable nodes
- Very high bandwidth

Data Reduction: Convert digital hits to physical coordinates

- Noise reduction, zero suppression
- Signal time determination
- Clusterisation and coordinate evaluation
- Pattern recognition (rings, tracklets, ...)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Sampling Readout

Continuous Sampling

- All channels are digitized continuously, free running, unbiased readout
- Each detector can contribute to event selection
- No dedicated trigger detector

Technical Implications

- Massive data reduction as early as possible
- Flexible selection by programmable nodes
- Very high bandwidth

Data Reduction: Convert digital hits to physical coordinates

- Noise reduction, zero suppression
- Signal time determination
- Clusterisation and coordinate evaluation
- Pattern recognition (rings, tracklets, ...)

Architecture

Components

- Time distribution
- Intelligent frontends
- Powerful compute nodes
- Configurable high speed network

Data flow

- Data reduction
- First selection at high rate
- Further selections at lower rates, but with more detectors
- Data logging after online reconstruction

Architecture

Components

- Time distribution
- Intelligent frontends
- Powerful compute nodes
- Configurable high speed network

Data flow

- Data reduction
- First selection at high rate
- Further selections at lower rates, but with more detectors
- Data logging after online reconstruction

Sampling and Selection

- Reconstruct signal time and form *detector specific* time slices
- Associate time slices according to event selection scheme

Summary and Outlook

Summary

- Hot topics in hadron physics by using an anti-proton beam
- Spectrometer: hermiticity, high precision and rate capability
- DAQ & trigger: highly flexible programmable physics machine

Outlook

- Roadmap: Technical Design Report in 2008
- Data taking from 2013