<u>Symbiosis of DAQ, Accelerator Settings,</u> <u>Diagnostics, and Slow Controls</u>

Illustrative Examples:

- Particle Detection by Means of Schottky-Noise Frequency Measurements
- Revolution Frequencies at the Transition Setting of the Experimental Storage Ring
- Photon-free Precise Spectroscopy by Means of Dielectronic Recombination

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

New exprimental possibilities at Super-FRS/NESR

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

Experimental Storage Ring, ESR

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

Particle Detection in Storage Rings by Means of Schottky-Noise Frequency Measurements

- Basic features of the Schottky noise method.
- ESR-Experiments as Examples for:
 - Non-destructive non-instantaneous particle detection.
 - Broad band detection of a multitude of masses (momenta).
 - Frequency (momentum, mass) resolving power.
 - Count rate: dynamics; number of particles.
 - Sensitivity, single particle detection.
- Schottky–noise equipment for the ESR experiments:
 - Schottky-noise sampling.
 - Time Capture Data Acquisition, TCAP-DAQ.
- > Outlook:
 - Electron cooling force spectrometer.
 - R&D topics, developments, and improvements

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

Frequency Measurements by Schottky Noise

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

Cooling: narrowing velocity, size and divergence of the stored ions

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

Schottky Signal of the Bound-State β -Decay ¹⁸⁷Re⁷⁵⁺ \rightarrow ¹⁸⁷Os⁷⁵⁺

 $T_{1/2}$ (¹⁸⁷Re⁷⁵⁺) = 33(2) y lons in super nova explosions are highly ionized.

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

Mass Measurements at ESR

Time Capture Data Acquisition (TCAP DAQ)

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

Schottky Noise Sampling

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

Broad band Schottky frequency spectrum

Schottky Mass Measurements

Integration Time

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

Decay of a Single Stored Ion

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

The Experimental Storage Ring, ESR

First Direct Observation of Bound-State β-Decay

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

Time traces of bound beta decay

• Left: isomeric nuclear state

Middle: bare TI-206 g.s.

Right: $\beta(b)$ daughter = = H-like Pb-206

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

R&D Topic: Multiple Schottky Pickups and FFT

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

Cooling Force

Measured Longitudinal Cooling Force at ESR (Th. Winkler et al.)

as a function of the relative velocity between the ions and the electrons

as a function of the ion charge

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

Basic Idea of the Cooling Force Spectrometer

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

Mass Measurements at ESR

Isochronous Mass Measurements at ESR

5 GHz bandwidth, 10 GHz sampling rate 2 channels with 64 MB fast memory

new: 15 GHz, 40 GHz sampling rate (2 ch.) 64 MB fast memory per channel

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

Data Analysis

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

Dielectronic Recombination

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

Experimental Setup

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

Experimental Storage Ring, ESR

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

Determination of the $2s_{1/2} - 2p_{1/2}$ Splitting

Main Idea: Extrapolate to the series limit!

Additionally taken into account:

- fine structure of peaks
- distribution of individual resonance strengths
- apparaus function (velocity spread of electrons)

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

Relative Contributions to the $2s_{1/2}$ - $2p_{1/2}$ Energy Splitting (Li-like lons)

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

Isotopic Shift of Li-like ¹⁴²Nd⁵⁷⁺ vs. ¹⁵⁰Nd⁵⁷⁺ by Means of Dielectronic Recombination at ESR

C. Brandau, C. Kozhuharov, A. Müller et al.

First preliminary results of a pilot experiment performed at ESR in August 2005

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

Ultracold Electron Beam

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

KLL-DR-Experiments at ESR

Basic Idea: The ion beam is cooled stochastically. The electron cooler serves solely as an electron target.

Stochastic Cooling : The average position of a sample in the phase space is detected. This defines the correction of the kicker.

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

First Measurement of KLL-DR-Resonances in U⁹¹⁺

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

- The symbiosis of experimental FEE with special accelerator settings, with the slow controls, and with the diagnostics has been the base of several successful experiments.
- Opportunity knocks but once—the present planning of the future accelerators, of their diagnostics and slow controls ought to ensure a large bandwidth of networking and interfacing between the experiments and storage rings.

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005

Conclusions

- Particle detection in storage rings by means of Schottky-noise fast Fourier transform frequency measurements is a versatile tool for non-destructive non-instantaneous measurements.
- A broad band of masses or of momenta can be detected.
- The mass and/or momentum resolving power is excellent.
- Intensities and lifetimes can be measured as well.
- The count rate dynamics is up to eight orders of magnitude.
- One single highly-charged heavy-ion can be detected.
- The data—taken continuously—can be handled and stored.
- There is room for improvement, research and development:
 - multiple Schottky pickups and correlated FFT.
 - electron cooling force spectrometer

Christophor Kozhuharov, GSI Darmstadt First FAIR FEE Workshop, Oct 11-13, 2005