#### **Unruh effect & Schwinger mechanism in strong lasers?**

Ralf Schützhold

Fachbereich Physik Universität Duisburg-Essen

UNIVERSITÄT DUISBURG ESSEN

#### **Unruh Effect**

Uniformly accelerated detector experiences inertial vacuum state as thermal bath with Unruh temperature

$$T_{\text{Unruh}} = \frac{\hbar}{2\pi k_{\text{B}}c} a = \frac{\hbar c}{2\pi k_{\text{B}}} \frac{1}{d_{\text{horizon}}}$$



W. G. Unruh, Phys. Rev. D 14, 870 (1976).

#### **Accelerated Scatterer**

Scattering in accelerated frame (thermal bath)



Translation back into inertial frame Conversion of (virtual) quantum vacuum fluctuations into (real) particle *pairs* by non-inertial scattering Vacuum entanglement → entangled pairs Compare: P. Chen and T. Tajima, Phys. Rev. Lett. **83**, 256 (1999). E.g., strongly accelerated electrons...

## **Constant Electric Field (** $\dot{a} = 0$ **)**

#### R. S., G. Schaller, and D. Habs, Phys. Rev. Lett. 97, 121302 (2006).



#### Unruh radiation

#### Larmor radiation

 $\rightarrow$  blind spot: quantum (Unruh) radiation dominates within small forward cone with angle

$$\vartheta = \mathcal{O}\left(\frac{1}{\gamma}\sqrt{\frac{E}{E_S}}\right), \ \mathfrak{P}_{\text{Unruh}}(\vartheta) = \mathcal{O}\left(\frac{E^4}{E_S^4}\right) \ll 1$$

Schwinger limit  $E_S = m_e^2/q_e = \mathcal{O}(10^{18} \,\mathrm{V/m})$ 

Unruh effect & Schwinger mechanism in strong lasers? - p.4/14

## Alternative Set-up ( $\dot{a} \neq 0$ )

per

Laser beam with linear polarization and  $10^{18}$ W/cm<sup>2</sup> Counter-propagating electron pulse with  $\gamma = 1000$ Laboratory frame: optical photons with energy 2.5 eV

Rest frame of electrons: strongly boosted field

$$E \approx \frac{E_S}{300}, \quad \omega = 5 \text{ keV} \approx \frac{m_e}{100}$$
  
Emission of entangled  
EPR-pairs of photons:  
 $k + k' = \omega$  (resonance)  
perfectly correlated  
polarizations

## **Lowest-order Diagrams**



### **Lowest-order Scaling**

Quantum (Unruh) radiation (cf.  $E^4/E_S^4$ )

$$\mathfrak{P}_{\text{Unruh}} = \frac{\alpha_{\text{QED}}^2}{4\pi} \left[\frac{E}{E_S}\right]^2 \times \mathcal{O}\left(\frac{\omega T}{30}\right)$$

Classical counterpart (Larmor)

$$\mathfrak{P}_{\text{Larmor}}^{1\gamma} = \alpha_{\text{QED}} \left[ \frac{qE}{m\omega} \right]^2 \times \mathcal{O} \left( \frac{\omega T}{2} \right)$$

One electron with  $\gamma = 300$  after 100 cycles in Laser field with  $10^{18}$ W/cm<sup>2</sup> yields  $\mathfrak{P}_{\text{Unruh}} = 4 \times 10^{-11}$  and  $\mathfrak{P}_{\text{Larmor}}^{1\gamma} = \mathcal{O}(10^{-1})$ e.g.,  $N_e = 6 \times 10^9$  ... Unruh effect & Schwinger mechanism in strong lasers? - p.7/14

## Distinguishability

Larmor monochromatic  $k = \omega$ , Unruh not  $k + k' = \omega$ in rest frame of electron  $\rightarrow$  boost to lab frame



Larmor (left), Unruh (right)  $0 < E < 2 MeV, 0 < \vartheta < 1/100$ 

- $\rightarrow$  monochromators
- $\rightarrow$  apertures (e.g., blind spot)
- $\rightarrow$  polarization filters

R. S., G. Schaller, and D. Habs, Phys. Rev. Lett. 100, 091301 (2008).

Unruh effect & Schwinger mechanism in strong lasers? – p.8/14

## **Schwinger Mechanism**

Problem: non-perturbative imaginary part of  $\Gamma[A_{\mu}] = -i \ln \langle in | out \rangle = \ln[\det\{i(\partial - iqA) - m\}] = ?$ 

- very few analytic solutions ( $\rightarrow$  Dirac operator) e.g.,  $\boldsymbol{E}(t) = E\boldsymbol{e}_z/\cosh^2(\Omega t)$
- 1D-scattering problem for  $\boldsymbol{E}(t) = \boldsymbol{e}_z f(t)$
- approximations: WKB, instanton for  $\boldsymbol{E}(t) = \boldsymbol{E}_0 f(t)$  or  $\boldsymbol{E}(x) = \boldsymbol{E}_0 f(x)$  (i.e., 1D)

numerical techniques (Monte Carlo worldline)
 Keldysh parameter: non-perturbative vs multi-photon

$$\gamma = \frac{m\Omega}{qE} \to P_{e^+e^-} \propto \begin{cases} \exp\{-\pi E_S/E\} &: \ \gamma \ll 1\\ (qE/[m\Omega])^{4m/\Omega} &: \ \gamma \gg 1 \end{cases}$$

#### **Assisted Schwinger Mechanism**

Strong & slow + weak & fast pulse ( $\rightarrow$  experiment)

$$\boldsymbol{E}(t) = \frac{E}{\cosh^2(\Omega t)} \, \boldsymbol{e}_z + \frac{\varepsilon}{\cosh^2(\omega t)} \, \boldsymbol{e}_z$$



## Summary

• signatures of Unruh effect in near-future facilities  $N_e = 6 \times 10^9$ ,  $\gamma = 300$ ,  $10^{18}$ W/cm<sup>2</sup>, 100 cycles



- detectability? spatial interference of many electrons?
- Schwinger mechanism?  $E \not\ll E_S = m_e^2/q_e = \mathcal{O}(10^{18} \,\mathrm{V/m})$

R. S., G. Schaller, and D. Habs, Phys. Rev. Lett. 97, 121302 (2006).
R. S., G. Schaller, and D. Habs, Phys. Rev. Lett. 100, 091301 (2008).
R. S., H. Gies, G. Dunne, arXiv:0807.0754

## Acknowledgements



- EU-Extreme Light Infrastructure (ELI)
- Munich-Centre for Advanced Photonics (MAP)
- G. Schaller, D. Habs, F. Grüner, U. Schramm, P. Thirolf, J. Schreiber, F. Bell, etc.

### **Low-Energy Effective Action**

Spin- and energy-independent Thomson scattering

$$L_{\text{electron}} = -m_e \sqrt{1 - \dot{\boldsymbol{r}}^2} - q_e \, \dot{\boldsymbol{r}} \cdot \boldsymbol{A}(\boldsymbol{r})$$
Split  $\boldsymbol{A} = \boldsymbol{A}_{\parallel} + \boldsymbol{A}_{\perp} \rightsquigarrow \boldsymbol{r} = \boldsymbol{r}_{\parallel} + \delta \boldsymbol{r}_{\perp}$  yields
$$\mathcal{L}_{\perp} = \frac{1}{2} \left( \boldsymbol{E}_{\perp}^2 - \boldsymbol{B}_{\perp}^2 \right) - \frac{g}{2} \, \boldsymbol{A}_{\perp}^2 \delta^3(\boldsymbol{r}_{\parallel}[t] - \boldsymbol{r}) \sqrt{1 - \dot{\boldsymbol{r}}_{\parallel}^2[t]}$$
Planar Thomson *s*-wave scattering with  $g = q_e^2/m_e$ 



# **Two-photon Amplitude**



Perturbation theory for small coupling  $g = q_e^2/m_e$ 

$$|\mathrm{out}\rangle = |0\rangle + \sum_{\boldsymbol{k},\lambda,\boldsymbol{k'},\lambda'} \mathfrak{A}_{\boldsymbol{k},\lambda,\boldsymbol{k'},\lambda'} |\boldsymbol{k},\lambda,\boldsymbol{k'},\lambda'\rangle + \mathcal{O}(g^2)$$

Two-photon amplitude of created pairs

$$\begin{aligned} \mathfrak{A}_{\boldsymbol{k},\lambda,\boldsymbol{k'},\lambda'} &= \frac{\boldsymbol{e}_{\boldsymbol{k},\lambda} \cdot \boldsymbol{e}_{\boldsymbol{k'},\lambda'}}{2iV\sqrt{kk'}} \int dt \, g \, \sqrt{1 - \dot{\boldsymbol{r}}_e^2[t]} \, \times \\ &\times \exp\left\{i(k+k')t - i(\boldsymbol{k}+\boldsymbol{k'}) \cdot \boldsymbol{r}_e[t]\right\} \end{aligned}$$

Depends on electron's trajectory  $r_e[t]$ Always entangled photon pairs  $e_{k,\lambda} \cdot e_{k',\lambda'}$