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OutlineOutline

• Ion acceleration with high-intensity lasers: 
conditions and required characteristics

• Ion acceleration by the radiation pressure: the laser 
piston model

• Numerical simulations of the high-intensity ion 
acceleration and hole boring

• Effect of the electron radiation losses on the ion 
acceleration

• Fast Ignition with 'in situ' accelerated deuterons
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Ion acceleration with intense laser pulsesIon acceleration with intense laser pulses

Fast  ions can find many applications in fusion, industry and 
medicine: low ratio current/ energy flux, simple ballistic    

transport, high absorption efficiency

but one needs an efficient and compact ion accelerator to 
energies > 100 MeV.

Two mechanisms of laser ion acceleration have been 
considered:
• TNSA - target normal sheath acceleration: requires an    

efficient production of high-energy electrons, high-quality        
target surface, less restrictions on the laser pulse

• Ponderomotive acceleration: requires cold electrons,               
high-quality laser pulse, less restrictions on the target, 
could be more efficient

28.13 g/cm10
MeVi,

ερ −≅l
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Ion acceleration by highIon acceleration by high--energy electronsenergy electrons

A cloud of high energy electrons creates an electrostatic field on the density 
gradient and accelerates ions from the target surface: the TNSA mechanism 
– broad energy spectrum, Coulomb repulsion of the accelerated bunch.
Cold electrons are necessary for charge neutralization of the dense 
ion bunch
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Circular Circular vs vs linear laser polarizationlinear laser polarization

Circular laser polarization suppresses the electron heating. It provides favorable 
conditions for ponderomotive acceleration and ion beam neutralization. Example 
of electron spectra at the laser intensity 1.5×1020 W/cm2 and solid density.

Cold electrons Hot electrons O.Klimo et al, PRST-AB, 2008

Circular laser polarization and electron radiation losses are two 
main effects to maintain a low electron temperature
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Ion acceleration by laser piston Ion acceleration by laser piston –– stationary modelstationary model

Ions are accelerated due to the elastic 
collisions with a moving piston

Relation between the piston and 
ion velocities
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Conservation of the momentum flux 
(pressure) in the piston reference frame:
stationary propagation



EMMI Workshop, GSI, November 21, 2008 8

Ion acceleration by the laser piston: Ion acceleration by the laser piston: the piston velocitythe piston velocity
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Structure of the charge separation layer: Structure of the charge separation layer: 
electrostatic field and ion density distributionelectrostatic field and ion density distribution
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Structure of the ion charge separation layerStructure of the ion charge separation layer

a) velocity of the accelerated ions 
in the piston reference frame
b) ion γ-factor

c) ion density distributions
d) spatial distributions of the 
electrostatic potential and field
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Structure of the electron sheath: Structure of the electron sheath: 
laser field and electron density distributionlaser field and electron density distribution
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Structure of the electron sheathStructure of the electron sheath

a) particle velocities
b) γ-factors
c) electron and ion densities

d) vector potential
e) electrostatic potential
f) electrostatic field

a)‏
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c)‏
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Laser potential in the electron sheathLaser potential in the electron sheath

Laser potential on the board of the electron charge separation layer a0
is ~ 20 times larger than one would qualitatively expect 
and it decreases slower with the plasma density
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A very tight balance between 
the ponderomotive potential 
and the electrostatic field 
makes the electron 
confinement very unstable
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Efficiency of ion acceleration by the laser pistonEfficiency of ion acceleration by the laser piston
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Ion energy spectrum in an Ion energy spectrum in an inhomogeneousinhomogeneous plasmaplasma
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Ions are mono-energetic in a homogeneous plasma, in an exponential density
profile the ions are a power spectrum

Deuteron spectra in a plasma with the density increasing from 1 to 100nc
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Time of hole boring and laser fluenceTime of hole boring and laser fluence

Time of ion acceleration depends on the difference between the photon and piston 
velocities

, 10 GW/cm2

F100 = IincTp is the laser flux needed for accelerate ions from  the density 
increasing from 1 to 100nc over the length of 100λ, F1 is the same for the density 
range 0.1 to 1nc over the length of 1000λ
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1D & 2D PIC simulations of ion acceleration & hole boring1D & 2D PIC simulations of ion acceleration & hole boring

The code accounts for the electron radiation in the laser field and for the electron 
slowing down due to the radiation emission

Laser pulse:
ainc = 100 
circularly polarized 
I inc= 4×1022 W/cm2

τ = 188 λ/c
2D: d/λ = 20 flat-top  

with expon. wings
Plasma: deuterium 

exponential profile
Lp/λ = 60; L/λ = 20

n0/nc = [5-100]

100ncr

5ncr

laser

z/λ
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1D PIC simulation 1D PIC simulation –– electron & ion phase plotselectron & ion phase plots

t = 30 λ/c beginning of acceleration

• Electrons maintain the 
acceleration field: they are 
driven by the ponderomotive 
force of the laser field in the 
forward direction, while the 
charge separation field 
accelerates them backwards. 

• Ions driven by the charge 
separation field are accelerated 
and move forward. 

• Almost complete neutrality is 
maintained in front of the piston

• Some electrons escape the 
piston: they are losing their 
energy by generating high 
energy photons, and reverse 
their motion. 
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Electron radiation losses assure 
the quality of the piston
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1D PIC simulations with/without radiation reaction1D PIC simulations with/without radiation reaction

Laser pulse: a = 100, circular polarization, t = 200T, plasma: n = 10nc,mi = 2mp.

• High quality ion                           
beam

• 14% of the laser 
pulse energy of 28 
laser cycles is 
converted into a high 
frequency radiation!
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Radiation Reaction: ComptonRadiation Reaction: Compton--Thomson CoolingThomson Cooling

a) charge separation &
E-field creation 

b) escaped e- moves 
backwards, scatters 
on the incoming field 
& returns back

c

c

E
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Electron radiation slowing downElectron radiation slowing down

Thomson scattering is strongly amplified in the relativistic 
laser field due to high order harmonic generation:

γe << a γe >> a
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Radiation is enhanced if the electron propagates toward the laser 
beam with a high energy, γe >> a >> 1. 
The photons with the frequencies ωph ~ ω a γe

2 are emitted in a 
narrow cone θ ~ a/γe << 1.
The electron radiation stopping length reads
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1D PIC simulation 1D PIC simulation –– ion energy distributionion energy distribution

t = 250 λ/c end of acceleration

Laser fluence: 20 GJ/cm2

Ions: 5.4 GJ/cm2 (27%) ‏
Electrons: ~1%
High energy photons: ~ 10%

analytical
simulation

z/λ

The ions are gaining the 
main part of laser energy, the 
electrons remain cold due to 
the radiation losses

p z
/m

i c
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2D PIC simulation 2D PIC simulation –– channel formationchannel formation

z/λ

y/
λ

y/
λ

t = 
90λ/c

t = 
190λ/c

Flat-top laser intensity profile

Ion density distribution 
demonstrates efficient hole 
boring in the plasma, a clean 
and a stable channel
Filamentation is strongly 
suppressed due to radiation 
losses
Velocity of hole boring is in 
agreement with the 1D model

ions

ions



EMMI Workshop, GSI, November 21, 2008 24

Angular distribution of ions vs
energy at the final instant at 
|y/λ| < 10 shows a narrow peak 
in forward direction 
Energy distribution in the 
central part (a cone of 6o) 
agrees well with 1D PIC 
simulations and analytical 
model 

laser

2D PIC simulation 2D PIC simulation –– ion energy ion energy 
distribution and angular spreaddistribution and angular spread
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ConclusionsConclusions

Laser acceleration of ions to high energies by the 
ponderomotive pressure could be efficient at high 
intensities: high contrast and circular polarization are 
needed

A model of a laser piston predicts the ion energy 
spectrum as function of the laser and plasma parameters. 
Efficient ion charge neutralization by cold electrons

Numerical simulations are in a good agreement with the 
model at high plasma densities: suppression of laser 
beam filamentation in the channel, stabilizing effect of 
electron radiation losses on the channel formation

More extended 1D & 2D simulations are under way: 
electron radiation losses, stability of ion acceleration, ion 
beam divergence
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