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Introduction
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ALICE upgrade during LS2
 

 Operate ALICE at high luminosity 
(L=6×1027 cm-2s-1 for Pb-Pb)

 Significant detector upgrades:
 Inner Tracking System (ITS)

 improved vertexing and standalone tracking
 increased readout speed and rate capability

 Muon Forward Tracker
 Electronics, Trigger, Readout systems 
 TPC with continuous readout.

 high rate capability
 preserve PID and tracking performance

 Rich physics program in RUN3 (>=2019)
 Detailed characterization of QGP
 Main physics topics:

 Heavy flavors
 Low-mass and low-pt di-leptons
 Quarkonia (J/ψ, ψ’,Υ)
 Jet quenching and fragmentation
 Anti- and hypernuclei
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The ALICE Time Projection Chamber
In numbers

Most challenging TPC ever built

557568  readout pads
1000 samples in time direction
Designed for charged-particle tracking and dE/dx measurement 
in Pb-Pb collisions with dNch/dη=8000, σ(dE/dx)/(dE/dx)<10%

2x18  Inner 
Readout 
Chambers

2x18  Outer 
Readout 
Chambers

Gas:
~90 m3 

Ne-CO2[-N2] (90-10[-5])
temp. homogeneity and stability < 100mK

2.5m
2.5m

Central HV electrode
100kV → 400 V/cm

v
drift

  = 2.73 cm/μs
Total drift time 92 µs

5m
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The ALICE TPC
Limitations of the present system

 MWPC with a gating grid (GG) limits operation to ~3.5kHz
 100μs (electron drift) + 200μs (GG closing – full ion blocking)

 Otherwise sizeable distortions due to space charge
 Change of read-out system required
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The ALICE TPC
Upgrade program

General requirements
 50 kHz Pb-Pb collisions (100× higher than present)
 Record all minimum bias events

Solution
 No gating and continuous readout with GEMs

Implication
 Event pile-up in TPC: ~5 overlapping events

Requirements for GEM readout

 Operate at gain 2000 in Ne-CO2-N2 → Signal to noise

 IBF (ion back flow) < 1% → Impact on distortions

 σE/E < 12% for 55Fe → Impact on dE/dx resolution

 Stable operation under LHC conditions
 + novel calibration and online reconstruction schemes 
 + new electronics (negative polarity, self-triggered)

 (data compression by factor 20 and space charge distortions)

A"Large"Ion"Collider"Experiment"

Outline

•  ALICE upgrade after Long Shutdown 2 (LS2) 

•  ALICE TPC upgrade  

   with micro-pattern gaseous  

   detectors 

•  Status of R&D activities 

•  Summary and Outlook 

http://cds.cern.ch/record/1622286 

ALICE TPC Upgrade  
Technical Design Report  

(submitted in 2013)

Endorsed by LHCC
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GEM technology
Introduction

8

Future Challenges in Tracking and Trigger Concepts Jens Wiechula 8

GEM detectors
Working Principle

http:/ /gdd.web.cern.ch/GDD/

 Gas Electron Multiplier: micro-pattern gas detector
 Holes act as multiplication channels

 Up to ΔU≈500V 
 Fields up to ~100kV/cm

 Intrinsic ion blocking

-
+

Low field: 400 V/cm

High field: 4 kV/cm

ΔU

• Thin polyimide foil ~50 μm
• Cu-clad on both sides ~5 μm
• Photolithography: ~104 holes/cm2

Typical GEM geometry:
• Inner/Outer hole diameter: 50/70 μm
• Pitch: 140 μm
• Other geometries with different pitch sizes:

● 90μm (SP), 200μm (MP), 280μm (LP)

 EHole up to 100 kV/cm with 

ΔVGEM = 500 V

 EHole >> EAbove 

most of the ions are collected 
on the top side of GEM

 EBelow > EAbove

electron extraction is improved

140 μm

50 μm
70 μm
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GEM technology
Impact of the Ion Back Flow

 50kHz Pb-Pb, gain = 2000, IB=1% (ε=20)

 t
d,ion

= 160ms → ion pileup from 8000 events

 Distortions up to dr ≈ 20cm drφ ≈ 8cm (small r and z)
 Final calibration to ~10-3 required
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R&D with small prototypes
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IBF measurements
Introduction – nomenclature

IB = I
cathode

/I
anode

ε = IB * G
eff

 – 1
n

tot
 = n

ion
 * IB * G

eff

 Ion blocking not as efficient as with gating grid (10-5)

 Total ions in drift volume (ntot) strongly depending on IBF

 Use lower GEMs (3, 4) to adjust the gain (usually ΔVGEM3/ΔVGEM4 = 
const.)

 Huge parameter space →Nfoils, ΔVGEM1, ΔVGEM2, ET1-Eind

I
cathode

I
anode

2 mm

2 mm

2 mm

2 mm

4-80 mm

E
T1

E
ind

E
T2

E
T3

55Fe, X-Ray generator



5th HIC for FAIR Physics Day Jens Wiechula 12

IBF measurements
Systematic scans – IBF minimisation

 Large parameter space scanned for triple GEM
 IBF not lower than ~2.5%

 Move to quadruple GEM stack 
 IBF not lower than ~2% (S-S-S-S configuration)
 → Test other GEM foil configurations

S-S-S S-S-S-S
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IBF measurements
Optimisation of IBF and local energy resolution

 55Fe resolution and IBF are competing
 → always both parameters need to be monitored

 Mainly driven by ΔVGEM1, ΔVGEM2

 Plot variables against each other → show working point region

S-LP-LP-S
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IBF measurements
Summary of best results

 Many more GEM 
configurations scanned

 Base line solution 

(S-LP-LP-S)
 Working point: IB ~0.65%, 

σ~12%
 ΔVGEM =  275, 235, 284, 345 (V)

 ET/Ind = 4, 2, 0.1, 4 (kV/cm)

 → Requirements fulfilled
 → Well characterised
 S-S-LP-SP under investigation

LP: 280μmS: 140μm
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IBF measurements
Differential picture

 Measure currents on all electrode
 Get differential picture of charge transport
 Main contribution to IBF from first two layers
 Main amplification from last layer
 Collection efficiency on first GEM drives the energy 

resolution
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IBF simulations
Dependence on GEM hole distance

 Ne/CO2 simulation studies

 In case of high Et1, alignment is an issue.
 Gain and IBF vs. distance between holes in GEM1 and GEM2

 x10 difference in IBF w.r.t hole alignment

Et1=1kV/cm

Et1=2kV/cm

Et1=4kV/cm

 
Fig. 9 

 

 
 

Fig. 10 
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IBF simulations
Dependence on GEM hole distance – optical transparency

GEM Foils aligned

GEM Foils rotated by 90°

 Alignment cannot be 
controlled on µm level

 'Optical' transparency very 
different over the GEM 
surface

 Resulting from hexagonal 
GEM pattern

 Would result in very 
inhomogeneous IBF → 
unfavourable

 Rotate adjacent foils by 90°
 More homogeneous pattern
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IBF simulations
Comparison to simulations

 Simulations available since a few years
 Hole distance critical parameter 

→ use to tune the matching

 Good agreement between measurement and simulation

Triple GEM
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IBF simulations
Ionisation dependence

 Dependence of IBF on space-charge density (SCD) observed in measurements
 Trends reproduced well in simulations 

 SCD estimates in measurements coarse estimates
 SCD in simulations assumed homogeneous

 At high SCD the effective drift field at GEM1 top is decreased
 More filed lines end on GEM1 top → lower IBF
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GEM stability tests
Discharge probability

 Discharge probability for triple GEM in 
agreement with literature

 Quadruple GEM mostly upper limits 
(measurement time)

 Suitable for LHC running conditions
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Results from a large prototype
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Results from a large prototype
Assembly of full size IROC

29.2
 cm

46
.7

 c
m

49.7 cm

GEM Stack – wrinkles again! 

!   Stack screwed with rigid screws  
(Polyamid 6.0-gv 25% UL94 HB) 

!   Additional holes for mounting 

!   Why do we still have wrinkles? (ideas) 
!   Gluing misalignment 
!   Wrong holes alignment, too small tolerances? 
!   Too weak screws 
!   Holes position (not in the middle of frame) 

!   We did not try to fght with that now not to introduce new problems (dust, cuts, etc.) 

!   MUST be studied afterwards! 11 

 4 single-mask GEMs in the 
configuration S-LP-LP-S

 GEMs glued on 2 mm frames
 Prototype mounted in a test 

box with a field cage
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Results from a large prototype
Test beam campaign

 Test beam studies at 
PS and SPS with full-
sized IROC prototype

 Discharge probability
 dE/dx performance

4-GEM IROC

Cherenkov

Beam

SPS

PS
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Results from a large prototype
PS test beam – dE/dx performance

 dE/dx performance as expected from simulation
 Same performance as present MWPC IROC
 Physics performance not compromised up to σ=14%

 → Allow for operation of IROC / OROC at different working points

IB=0.34%

IB=0.65%

IB=0.51%
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Results from a large prototype
SPS test beam – discharge probability

 Number of accumulated particles Ntot = (4.7±0.2)×1011

 Comparable to a typical Pb-Pb running year
 Three discharges observed

 Estimate for run 3 based on PS results
 About 650 discharges for whole TPC per typical yearly heavy-ion run 

at 50 kHz (5 per GEM stack)

 Safe operation guaranteed
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Reconstruction and 
calibration strategy
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Reconstruction strategy
 



5th HIC for FAIR Physics Day Jens Wiechula 28

Calibration strategy
Measurement of residual distortions

 Correct residual distortions using 
track interpolation from external 
detectors (ITS-TRD - TOF)

 Space charge fluctuations 
require an update of the 
correction maps in 5 ms 
intervals

 Final calibration on the level of 
300 μm

ITS

TPC

TRD
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Calibration strategy
Calibration performance

 Testing limits of calibration procedure
 → Going up to twice the nominal ion density (ε=40)
 Tracking efficiency not compromised
 Slide decrease in pT resolution at low momenta

 → does not compromise physics program
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Summary
 

 Extensive R&D program carried out 
during the last years

 Thorough characterisation of several 
GEM configurations in terms of IBF, 
σ(55Fe), discharge probability

 Stable solution established as 4-GEM   
S-LP-LP-S

 Calibration strategy to correct 
distortion on the level of 10cm down 
to ~300μm demonstrated

 Physics performance very close to  
present system

 Confidence limit of operation 
extended substantially

 TPC TDR was endorsed by the LHCC
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Backup
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S-LP-LP-S default voltage setings
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Space charge fluctuation
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Space charge fluctuations
Magnitude of fluctuations

 Space-charge fluctuations 
at the level of 3%

 With knowledge of the 
average space-charge 
density this leads to

 Max ± 6mm residual 
distortion in r

 Max ± 2.5mm residual 
distortion in rφ

 Space-charge fluctuations are dominated by event and 
multiplicity fluctuations

 Sets constraints on the update interval for the final calibration: 
O(5ms)
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Continuous readout
Implications and treatment of space-point corrections

 Space-point reconstructions requires
 Drift-velocity,                     (ideal case – no distortions)
 Drift-time,

                                   – no distortions

 In continuous readout mode, t
0
 not known a priori

 Distortions treated as effective corrections
                                                        → requires t

0
!

r⃗ cls= r⃗ ro+∫
0

−t d

v⃗d( x , y , z)d t

v⃗d=(0,0,vd)

td=t digit−t 0

r⃗ cls=(x ro , y ro , z roc−vd t d)

r⃗ cls=( x ro , y ro , z ro)+Δ⃗ ( xro , y ro , z ro)
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Tracking approaches
Straight forward reconstruction

 Scan all t
0,i

 in current TPC drift time → external detector

 Apply SCD corrections to all clusters
 clusters from central interaction will be corrected properly, others are 

background)

 SCD corr. applied multiple times → Computation issue
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Tracking approaches
TPC standalone tracking

 Seeding in region with small distortions (ad-hoc SCD corr.)
 Extrapolation to x=y=0 → t

0
 estimate: better SCD corr.

 Track following → Modify search road with SCD estimate

 Clusters corrected once (fast)
 TPC only information (robust)



5th HIC for FAIR Physics Day Jens Wiechula 38

Intrinsic performance
Space point resolution

 Optmised Pad Response Function for MWPCs
 PRF of GEMs very narrow → diffusion helps to 

spread signal over several pads
 Slightly worse overall resolution with GEMs



5th HIC for FAIR Physics Day Jens Wiechula 39

Intrinsic performance
Momentum resolution

 Full detector simulation (central Pb-Pb event)
 Slightly worse resolution of TPC only tracks (space 

point resolution)
 Resolution restored matching tracks to the ITS
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Performance with pileup
dE/dx resolution

 Moderate worsening with increasing pileup (cluster 
merging)

 No difference between MWPC and GEM system
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