

ALICE-TPC upgrade with GEMs

Jens Wiechula for the ALICE TPC Upgrade collaboration

Outline

- Introduction
- R&D with small prototypes
- Results from a large prototype
- Reconstruction and calibration strategy
- Summary

Introduction

5th HIC for FAIR Physics Day

ALICE upgrade during LS2

5th HIC for FAIR Physics Day

- Operate ALICE at high luminosity (L=6×10²⁷ cm⁻²s⁻¹ for Pb-Pb)
- Significant detector upgrades:
 - Inner Tracking System (ITS)
 - improved vertexing and standalone tracking
 - increased readout speed and rate capability
 - Muon Forward Tracker
 - Electronics, Trigger, Readout systems
 - TPC with continuous readout.
 - high rate capability
 - preserve PID and tracking performance
- Rich physics program in RUN3 (>=2019)
- Detailed characterization of QGP
- Main physics topics:
 - Heavy flavors
 - Low-mass and low-pt di-leptons
 - Quarkonia (J/ψ, ψ',Υ)
 - Jet quenching and fragmentation
 - Anti- and hypernuclei

The ALICE Time Projection Chamber

1000 samples in time direction Designed for charged-particle tracking and dE/dx measurement in Pb-Pb collisions with dNch/dη=8000, σ(dE/dx)/(dE/dx)<10% 5th HIC for FAIR Physics Day Jens Wiechula

The ALICE TPC

- MWPC with a gating grid (GG) limits operation to ~3.5kHz
- 100µs (electron drift) + 200µs (GG closing full ion blocking)
 - Otherwise sizeable distortions due to space charge
- Change of read-out system required

5th HIC for FAIR Physics Day

The ALICE TPC

Upgrade program

<text><text><text><text><text>

TDR

ALICE ALICE-TDR-916-ADD-1	CERN-LHCC-2015-002 February 2, 2015				
Addendum t	o the				
Technical Design Report					
for the					
Upgrade of the ALICE Time Projection Chamber					
The ALICE Collab	oratioo"				
Copyright CERN, for the benefit of the ALICE Collabora This article is distributed under the terms of Creative Com- permits any use provided the original author(s) and source	tion. mmce Attribution License (CC-BY-3.0), which e are credited.				

Endorsed by LHCC

5th HIC for FAIR Physics Day

General requirements

- 50 kHz Pb-Pb collisions (100× higher than present)
- Record all minimum bias events

Solution

- No gating and continuous readout with GEMs
 Implication
- Event pile-up in TPC: ~5 overlapping events

Requirements for GEM readout

- Operate at gain 2000 in Ne-CO₂-N₂ \rightarrow Signal to noise
- IBF (ion back flow) < $1\% \rightarrow$ Impact on distortions
- $\sigma_{\rm E}/{\rm E}$ < 12% for 55Fe \rightarrow Impact on d*E*/dx resolution
- Stable operation under LHC conditions
- + novel calibration and online reconstruction schemes
- + new electronics (negative polarity, self-triggered)
- (data compression by factor 20 and space charge distortions)

GEM technology

Introduction

- Thin polyimide foil $\sim 50 \, \mu m$
- Cu-clad on both sides ~5 µm
- Photolithography: ~10⁴ holes/cm²

Typical GEM geometry:

- Inner/Outer hole diameter: 50/70 µm
- **Pitch**: 140 µm
- Other geometries with different pitch sizes:
 - 90µm (SP), 200µm (MP), 280µm (LP)

- E_{Hole} up to 100 kV/cm with $\Delta V_{GEM} = 500 V$
- E_{Hole} >> E_{Above}
 - most of the ions are collected on the top side of GEM
- $E_{Below} > E_{Above}$

electron extraction is improved

5th HIC for FAIR Physics Day

GEM technology

Impact of the Ion Back Flow

- 50kHz Pb-Pb, gain = 2000, IB=1% (ε=20)
 - $t_{d,ion}$ = 160ms \rightarrow ion pileup from 8000 events
- Distortions up to dr \approx 20cm dr $\phi \approx$ 8cm (small *r* and *z*)
 - Final calibration to ~10⁻³ required

5th HIC for FAIR Physics Day

R&D with small prototypes

5th HIC for FAIR Physics Day

Introduction – nomenclature

- $IB = I_{cathode}/I_{anode}$
- $\varepsilon = IB * G_{eff} 1$ $n_{tot} = n_{ion} * IB * G_{eff}$

- Ion blocking not as efficient as with gating grid (10-5)
- Total ions in drift volume (n_{tot}) strongly depending on IBF
- Use lower GEMs (3, 4) to adjust the gain (usually ΔV_{GEM3}/ΔV_{GEM4} = const.)
- Huge parameter space $\rightarrow N_{\text{foils}}$, ΔV_{GEM1} , ΔV_{GEM2} , E_{T1} - E_{ind}

5th HIC for FAIR Physics Day

Systematic scans – IBF minimisation

- Large parameter space scanned for triple GEM
 - IBF not lower than ~2.5%
- Move to quadruple GEM stack
 - IBF not lower than ~2% (S-S-S-S configuration)
- → Test other GEM foil configurations 5th HIC for FAIR Physics Day Jens Wiechula

Optimisation of IBF and local energy resolution

S-LP-LP-S

- 55Fe resolution and IBF are competing
 - \rightarrow always both parameters need to be monitored
- Mainly driven by ΔV_{GEM1} , ΔV_{GEM2}

 Plot variables against each other → show working point region 5th HIC for FAIR Physics Day
 Sth HIC for FAIR Physics Day

Summary of best results

- Many more GEM configurations scanned
- Base line solution (S-LP-LP-S)
 - Working point: IB ~0.65%, σ~12%
 - ΔV_{GEM} = 275, 235, 284, 345 (V)
 - E_{T/Ind} = 4, 2, 0.1, 4 (kV/cm)
- → Requirements fulfilled
- → Well characterised
- S-S-LP-SP under investigation

Differential picture

- Measure currents on all electrode
- Get differential picture of charge transport
- Main contribution to IBF from first two layers
- Main amplification from last layer
- Collection efficiency on first GEM drives the energy resolution

5th HIC for FAIR Physics Day

Dependence on GEM hole distance

- Ne/CO₂ simulation studies
- In case of high Et1, alignment is an issue.
 - Gain and IBF vs. distance between holes in GEM1 and GEM2
- x10 difference in IBF w.r.t hole alignment

5th HIC for FAIR Physics Day

Dependence on GEM hole distance – optical transparency

- Alignment cannot be controlled on µm level
- 'Optical' transparency very different over the GEM surface
 - Resulting from hexagonal GEM pattern
 - Would result in very inhomogeneous IBF → unfavourable
- Rotate adjacent foils by 90°
 - More homogeneous pattern

GEM Foils rotated by 90°

Comparison to simulations

- Simulations available since a few years
- Hole distance critical parameter
 - \rightarrow use to tune the matching
- Good agreement between measurement and simulation

Ionisation dependence

- Dependence of IBF on space-charge density (SCD) observed in measurements
- Trends reproduced well in simulations
 - SCD estimates in measurements coarse estimates
 - SCD in simulations assumed homogeneous
- At high SCD the effective drift field at GEM1 top is decreased
 - More filed lines end on GEM1 top \rightarrow lower IBF

5th HIC for FAIR Physics Day

GEM stability tests

Discharge probability

- Discharge probability for triple GEM in agreement with literature
- Quadruple GEM mostly upper limits (measurement time)
- Suitable for LHC running conditions
 Sth HIC for FAIR Physics Day
 Jens Wiechula

Results from a large prototype

5th HIC for FAIR Physics Day

Results from a large prototype Assembly of full size IROC

- 4 single-mask GEMs in the configuration S-LP-LP-S
- GEMs glued on 2 mm frames
- Prototype mounted in a test box with a field cage

Results from a large prototype Test beam campaign

- Test beam studies at PS and SPS with fullsized IROC prototype
- Discharge probability
- dE/dx performance

Results from a large prototype

- dE/dx performance as expected from simulation
- Same performance as present MWPC IROC
- Physics performance not compromised up to σ =14%

→ Allow for operation of IROC / OROC at different working points
 5th HIC for FAIR Physics Day Jens Wiechula

Results from a large prototype

SPS test beam – discharge probability

- Number of accumulated particles $N_{tot} = (4.7 \pm 0.2) \times 10^{11}$
 - Comparable to a typical Pb-Pb running year
 - Three discharges observed
- Estimate for run 3 based on PS results
 - About 650 discharges for whole TPC per typical yearly heavy-ion run at 50 kHz (5 per GEM stack)
- Safe operation guaranteed
 5th HIC for FAIR Physics Day

Reconstruction and calibration strategy

5th HIC for FAIR Physics Day

Reconstruction strategy

5th HIC for FAIR Physics Day

Calibration strategy

Measurement of residual distortions

- Correct residual distortions using track interpolation from external detectors (ITS-TRD - TOF)
- Space charge fluctuations require an update of the correction maps in 5 ms intervals
- Final calibration on the level of 300 µm

Calibration strategy

Calibration performance

- Testing limits of calibration procedure
 - \rightarrow Going up to twice the nominal ion density (ϵ =40)
 - Tracking efficiency not compromised
 - Slide decrease in p_{T} resolution at low momenta
 - \rightarrow does not compromise physics program

5th HIC for FAIR Physics Day

Summary

- Extensive R&D program carried out during the last years
 - Thorough characterisation of several GEM configurations in terms of IBF, σ(55Fe), discharge probability
 - Stable solution established as 4-GEM S-LP-LP-S
- Calibration strategy to correct distortion on the level of 10cm down to ~300µm demonstrated
 - Physics performance very close to present system
- Confidence limit of operation extended substantially
- TPC TDR was endorsed by the LHCC

5th HIC for FAIR Physics Day

S-LP-LP-S default voltage setings

IB (%)	σ(⁵⁵ Fe) (%)	$\Delta U_{ m GEM3}/\Delta U_{ m GEM4}$	$\Delta U_{\rm GEM1}$ (V)	$\Delta U_{\rm GEM2}$ (V)	$\Delta U_{\rm GEM3}$ (V)	$\Delta U_{\rm GEM4}$ (V)	E _{T1} (kV/cm)	E _{T2} (kV/cm)	E _{T3} (kV/cm)	<i>E</i> _{ind} (kV/cm)
0.63	11.3	0.8	275	240	254	317	2	3	1	4
0.34	17.0	0.8	225	235	304	382	4	2	0.1	4
0.51	13.8	0.8	255	235	292	364	4	2	0.1	4
0.65	12.1	0.8	275	235	284	345	4	2	0.1	4
0.98	10.4	0.8	305	235	271	339	4	2	0.1	4
2.05	9.1	0.8	315	285	240	300	4	2	0.1	4
0.76	12.0	0.95	275	235	308	323	4	2	0.1	4

Space charge fluctuation

5th HIC for FAIR Physics Day

Space charge fluctuations

Magnitude of fluctuations

- Space-charge fluctuations at the level of 3%
- With knowledge of the average space-charge density this leads to
 - Max ± 6mm residual distortion in r
 - Max ± 2.5mm residual distortion in rφ
- Space-charge fluctuations are dominated by event and multiplicity fluctuations
- Sets constraints on the update interval for the final calibration: O(5ms)

Continuous readout

Implications and treatment of space-point corrections

$$\vec{r}_{\rm cls} = \vec{r}_{\rm ro} + \int_{0}^{-t_d} \vec{v}_{\rm d}(x, y, z) dt$$

- Space-point reconstructions requires
 - Drift-velocity, $\vec{v}_d = (0, 0, v_d)$ (ideal case no distortions)
 - Drift-time, $t_d = t_{digit} t_0$
- $\vec{r}_{cls} = (x_{ro}, y_{ro}, z_{roc} v_d t_d)$ no distortions
- In continuous readout mode, t₀ not known a priori
- Distortions treated as effective corrections

•
$$\vec{r}_{cls} = (x_{ro}, y_{ro}, z_{ro}) + \vec{\Delta}(x_{ro}, y_{ro}, z_{ro}) \rightarrow requires t_0!$$

Tracking approaches

Straight forward reconstruction

- Scan all t_{0i} in current TPC drift time \rightarrow external detector
- Apply SCD corrections to all clusters
 - clusters from central interaction will be corrected properly, others are background)

■ SCD corr. applied multiple times → Computation issue 5th HIC for FAIR Physics Day Jens Wiechula

Tracking approaches

- Seeding in region with small distortions (ad-hoc SCD corr.)
- Extrapolation to $x=y=0 \rightarrow t_0$ estimate: better SCD corr.
- Track following \rightarrow Modify search road with SCD estimate
- Clusters corrected once (fast)
- TPC only information (robust)

5th HIC for FAIR Physics Day

Intrinsic performance

Space point resolution

- **Optmised Pad Response Function for MWPCs**
- PRF of GEMs very narrow \rightarrow diffusion helps to spread signal over several pads
- Slightly worse overall resolution with GEMs

Intrinsic performance

Momentum resolution

- Full detector simulation (central Pb-Pb event)
- Slightly worse resolution of TPC only tracks (space point resolution)
- Resolution restored matching tracks to the ITS

5th HIC for FAIR Physics Day

Performance with pileup

- Moderate worsening with increasing pileup (cluster merging)
- No difference between MWPC and GEM system

