

EBERHARD KARLS INIVERSITÄT TÜBINGEN

ALICE-TPC upgrade with GEMs

Jens Wiechula for the ALICE TPC Upgrade collaboration

Outline

- **Introduction**
- **R&D with small prototypes**
- **Results from a large prototype**
- **Reconstruction and calibration strategy**
- **Summary**

Introduction

ALICE upgrade during LS2

- Operate ALICE at high luminosity $(L=6\times10^{27}$ cm $-2s-1$ for Pb-Pb)
- **-** Significant detector upgrades:
	- Inner Tracking System (ITS)
		- **improved vertexing and standalone tracking**
		- **increased readout speed and rate capability**
	- **Muon Forward Tracker**
	- **Electronics, Trigger, Readout systems**
	- TPC with continuous readout.
		- high rate capability
		- **preserve PID and tracking performance**
- Rich physics program in RUN3 (>=2019)
- **-** Detailed characterization of QGP
- Main physics topics:
	- **Heavy flavors**
	- **-** Low-mass and low-pt di-leptons
	- Quarkonia (J/ψ, ψ',Υ)
	- Jet quenching and fragmentation
	- **Anti- and hypernuclei**

The ALICE Time Projection Chamber In numbers

5th HIC for FAIR Physics Day Jens Wiechula 5 557568 readout pads 1000 samples in time direction Designed for charged-particle tracking and dE/dx measurement in Pb-Pb collisions with dNch/dη=8000, σ(dE/dx)/(dE/dx)<10%

The ALICE TPC

Limitations of the present system

- MWPC with a gating grid (GG) limits operation to \sim 3.5kHz
- 100μs (electron drift) + 200μs (GG closing full ion blocking)
	- **Otherwise sizeable distortions due to space charge**
- Change of read-out system required

The ALICE TPC

Upgrade program

ALICE http://cds.cern.ch/record/1622286 Upgrade of the **Time Projection Chamber**

http://cds.cern.ch/record/1622286

Technical Design Report (submitted in 2013)

 \vdash $\mathsf{\Omega}$ \propto

Endorsed by LHCC

5th HIC for FAIR Physics Day Jens Wiechula 7

General requirements

- 50 kHz Pb-Pb collisions (100× higher than present)
- Record all minimum bias events

Solution

- No gating and continuous readout with GEMs **Implication**
- Event pile-up in TPC: ~5 overlapping events

Requirements for GEM readout

- \blacksquare Operate at gain 2000 in Ne-CO₂-N₂ \rightarrow Signal to noise
- IBF (ion back flow) < $1\% \rightarrow$ Impact on distortions
- σ_E/E < 12% for ⁵⁵Fe → Impact on d*E*/d*x* resolution
- Stable operation under LHC conditions
- $+$ novel calibration and online reconstruction schemes
- + new electronics (negative polarity, self-triggered)
- (data compression by factor 20 and space charge distortions)

GEM technology Introduction GEM technolog **Working Principle**

- Thin polyimide foil ~50 μm
- Cu-clad on both sides ~*5* μm
- Photolithography: ~10⁴ holes/cm²

Typical GEM geometry:

- ہ
م • Inner/Outer hole diameter: 50/70 μm
- + **Pitch**: 140 μm
- Other geometries with different pitch sizes:
	- 90μm (SP), 200μm (MP), 280μm (LP)

- E_{Hole} up to 100 kV/cm with
- \cdot E_{Hole} >> E_{Above}
	- most of the ions are collected on the top side of GEM
- E_{Below} > E_{Above}

8 electron extraction is improved

5th HIC for FAIR Physics Day 3 and Trigger Challenges in Trigger Challenges in Trigger Concepts Jens Wiechula 8 $\frac{1}{2}$

GEM technology Impact of the Ion Back Flow

- $-$ 50kHz Pb-Pb, gain = 2000, IB=1% (ε=20)
	- $t_{\rm d,ion}$ = 160ms \rightarrow ion pileup from 8000 events
- Distortions up to dr ≈ 20cm drφ ≈ 8cm (small *r* and *z*)
	- Final calibration to \sim 10⁻³ required

R&D with small prototypes

Introduction – nomenclature

 $\varepsilon = IB * G_{\text{eff}} - 1$ $n_{\text{tot}} = n_{\text{ion}} * IB * G_{\text{eff}}$

- Ion blocking not as efficient as with gating grid (10-5)
- Total ions in drift volume (n_{tot}) strongly depending on IBF
- Use lower GEMs (3, 4) to adjust the gain (usually $\Delta V_{\text{GEM3}}/\Delta V_{\text{GEM4}} =$ const.)
- **Huge parameter space** \rightarrow N_{foils}, ΔV_{GEM1} , ΔV_{GEM2} , E_{T1} - E_{ind}

Systematic scans – IBF minimisation

- Large parameter space scanned for triple GEM
	- \blacksquare **IBF not lower than** \sim **2.5%**
- Move to quadruple GEM stack
	- IBF not lower than ~2% (S-S-S-S configuration)
	- \rightarrow Test other GEM foil configurations

5th HIC for FAIR Physics Day **Jens Wiechula** 12 and 12

Optimisation of IBF and local energy resolution

- 55Fe resolution and IBF are competing
	- \blacksquare \rightarrow always both parameters need to be monitored
- Mainly driven by ΔV_{GFM1} , ΔV_{GFM2}

5th HIC for FAIR Physics Day **Jens Wiechula** 13 and 13 Plot variables against each other \rightarrow show working point region

Summary of best results

- Many more GEM configurations scanned
- **Base line solution** (S-LP-LP-S)
	- **Working point: IB** \sim **0.65%,** σ~12%
	- $\Delta V_{\text{GEM}} = 275, 235, 284, 345$ (V)
	- $E_{\text{T/Ind}} = 4, 2, 0.1, 4$ (kV/cm)
- $\textbf{P} \rightarrow \textbf{Requirements fulfilled}$
- → Well characterised
- **S-S-LP-SP under investigation**

Differential picture

- Measure currents on all electrode
- Get differential picture of charge transport
- **Main contribution to IBF from first two layers**
- **Main amplification from last layer**
- Collection efficiency on first GEM drives the energy resolution

5th HIC for FAIR Physics Day **Jens Wiechula** 15th HIC for FAIR Physics Day

Dependence on GEM hole distance

- Ne/CO $_2$ simulation studies
- In case of high Et1, alignment is an issue.
	- Gain and IBF vs. distance between holes in GEM1 and GEM2
- **x10 difference in IBF w.r.t hole alignment**

Dependence on GEM hole distance – optical transparency

- **Alignment cannot be** controlled on um level
- **'Optical' transparency very** different over the GEM surface
	- Resulting from hexagonal GEM pattern
	- Would result in very inhomogeneous IBF → unfavourable
- Rotate adjacent foils by 90°
	- More homogeneous pattern

GEM Foils rotated by 90°

Comparison to simulations

- Simulations available since a few years
- **Hole distance critical parameter**
	- \rightarrow use to tune the matching
- Good agreement between measurement and simulation

Ionisation dependence

- Dependence of IBF on space-charge density (SCD) observed in measurements
- **Trends reproduced well in simulations**
	- SCD estimates in measurements coarse estimates
	- **SCD in simulations assumed homogeneous**
- At high SCD the effective drift field at GEM1 top is decreased
	- More filed lines end on GEM1 top \rightarrow lower IBF

GEM stability tests

Discharge probability

- **Discharge probability for triple GEM in** agreement with literature
- Quadruple GEM mostly upper limits (measurement time)
- 5th HIC for FAIR Physics Day **Jens Wiechula** 2014 12:35 Jens Wiechula Suitable for LHC running conditions

Results from a large prototype

Results from a large prototype Assembly of full size IROC

- 4 single-mask GEMs in the configuration S-LP-LP-S
- **GEMs glued on 2 mm frames** \sim \sim \sim \sim \sim \sim \sim \sim
- $\begin{array}{c} \n\text{P} \cup \text{P} \cup \text$ **Prototype mounted in a test** box with a field cage

Results from a large prototype Test beam campaign

- **Test beam studies at** PS and SPS with fullsized IROC prototype
- **-** Discharge probability
- d*E*/d*x* performance

Results from a large prototype PS test beam – dE/dx performance $S_{\pi-\mathbf{e}}$ 1200 e: mean=101.55, ര=9.22, ര/mean=9.08% IB=0.65% π : mean= 66.10, σ =6.89, σ /mean=10.42% 1 GeV/c 1000 **4-GEM IROC** IB=0.51%800 $\sqrt{18} = 0.34\%$ 600 3 400 4GEM, TDR settings, gain 2000 4GEM, new baseline settings, gain 2000 200 2GEM+MM (HIROC), gain 2000 2GEM+MM (Yale), gain 4000 50 100 150 200 250 dE/dx_{ot} Simulation

25

 σ (55Fe) (%)

- d*E*/d*x* performance as expected from simulation
- Same performance as present MWPC IROC

15

10

Physics performance not compromised up to σ **=14%**

20

5th HIC for FAIR Physics Day Jens Wiechula 24 \blacksquare \rightarrow Allow for operation of IROC / OROC at different working points

 $S_{AB} = \frac{2 |\langle dE/dx \rangle_A - \langle dE/dx \rangle_B|}{\sigma (dE/dx)_A + \sigma (dE/dx)_B}$

Results from a large prototype

SPS test beam – discharge probability

- Number of accumulated particles $N_{tot} = (4.7\pm0.2)\times10^{11}$
	- Comparable to a typical Pb-Pb running year
	- **Three discharges observed**
- **Estimate for run 3 based on PS results**
	- About 650 discharges for whole TPC per typical yearly heavy-ion run at 50 kHz (5 per GEM stack)
- 5th HIC for FAIR Physics Day Jens Wiechula 25 **Safe operation guaranteed**

Reconstruction and calibration strategy

Reconstruction strategy

Calibration strategy

Measurement of residual distortions

- **Correct residual distortions using** track interpolation from external detectors (ITS-TRD - TOF)
- **Space charge fluctuations** require an update of the correction maps in 5 ms intervals
- **Final calibration on the level of** 300 μm

Calibration strategy

Calibration performance

- Testing limits of calibration procedure
	- \rightarrow Going up to twice the nominal ion density (ε =40)
	- Tracking efficiency not compromised
	- \blacksquare Slide decrease in $p_{\scriptscriptstyle\top}$ resolution at low momenta
		- \blacksquare \rightarrow does not compromise physics program

Summary

- **Extensive R&D program carried out** during the last years
	- **Thorough characterisation of several** GEM configurations in terms of IBF, σ(⁵⁵Fe), discharge probability
	- Stable solution established as 4-GEM S-LP-LP-S
- Calibration strategy to correct distortion on the level of 10cm down to ~300μm demonstrated
	- **Physics performance very close to** present system
- Confidence limit of operation extended substantially
- **TPC TDR was endorsed by the LHCC**

S-LP-LP-S default voltage setings

Space charge fluctuation

Space charge fluctuations

Magnitude of fluctuations

- Space-charge fluctuations at the level of 3%
- With knowledge of the average space-charge density this leads to
	- $Max \pm 6$ mm residual distortion in *r*
	- $Max \pm 2.5$ mm residual distortion in *rφ*
- Space-charge fluctuations are dominated by event and multiplicity fluctuations
- Sets constraints on the update interval for the final calibration: O(5ms)

Continuous readout

Implications and treatment of space-point corrections

$$
\vec{r}_{\text{cls}} = \vec{r}_{\text{ro}} + \int_{0}^{-t_d} \vec{v}_{\text{d}}(x, y, z) dt
$$

- **Space-point reconstructions requires**
	- \blacksquare Drift-velocity, $\vec{v}_{\rm d}{=} (0,0,v_{\rm d})$ (ideal case no distortions)
	- **Drift-time,** $t_d = t_{\text{digit}} t_0$
- $\vec{r}_{\rm cls}$ = ($x_{\rm ro}$, $y_{\rm ro}$, $z_{\rm roc}$ − $v_{\rm d}$ t_d) − no distortions
- In continuous readout mode, *t* 0 not known a priori
- **Distortions treated as effective corrections**

$$
\vec{r}_{\text{cls}} = (x_{\text{ro}}, y_{\text{ro}}, z_{\text{ro}}) + \vec{\Delta}(x_{\text{ro}}, y_{\text{ro}}, z_{\text{ro}}) \rightarrow \text{requires } t_0!
$$

Tracking approaches

Straight forward reconstruction

- Scan all $t_{_{0,i}}$ in current TPC drift time $→$ external detector
- **Apply SCD corrections to all clusters**
	- clusters from central interaction will be corrected properly, others are background)

5th HIC for FAIR Physics Day **Jens Wiechula** 36th HIC for FAIR Physics Day SCD corr. applied multiple times \rightarrow Computation issue

Tracking approaches TPC standalone tracking

- Seeding in region with small distortions (ad-hoc SCD corr.)
- Extrapolation to $x=y=0$ \rightarrow t_{0} estimate: better SCD corr.
- Track following \rightarrow Modify search road with SCD estimate
- **Clusters corrected once (fast)**
- TPC only information (robust)

5th HIC for FAIR Physics Day **Jens Wiechula** 37 Jens Wiechula

Intrinsic performance

Space point resolution

- Optmised Pad Response Function for MWPCs
- PRF of GEMs very narrow \rightarrow diffusion helps to spread signal over several pads
- Slightly worse overall resolution with GEMs

Intrinsic performance

Momentum resolution

- **Full detector simulation (central Pb-Pb event)**
- **Slightly worse resolution of TPC only tracks (space** point resolution)
- Resolution restored matching tracks to the ITS

Performance with pileup dE/dx resolution

- **Moderate worsening with increasing pileup (cluster** merging)
- No difference between MWPC and GEM system

