II. Physikalisches Institut

Ion Catcher & MR-TOF-MS for NUSTAR Experiments

Ann-Kathrin Rink for the FRS Ion Catcher Collaboration

II. Physikalisches Institut, Justus-Liebig Universität Gießen

HIC 4 FAIR Detector Workshop 10.04.2015 Frankfurt/M

NUSTAR and Low Energy Branch FRS Ion Catcher Developments and Results

NUSTAR @ FAIR

Nuclear **St**ructure, **A**strophysics and **R**eactions

MATS

MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly charged ions)

- High precision mass measurements
- Spectroscopy on highly-charged ions
- In trap spectroscopy

- Nuclear structure
- Test of mass models far from stability
- Nuclear astrophysics
 - Explain nuclear abundances
 - Nucleosynthesis
 - e.g. r-process

D. Rodriguez et al., Eur. Phys. J. Special Topics 183 (2010) 1

LaSpec

LaSpec (LAser SPECtroscopy)

- Collinear laser spectroscopy on ions
- Optical pumping and collinear laser spectroscopy on atoms

Isotope 1 (I = I)Counts **Isotope Shifts** $\rightarrow \delta < r^2 >$ (I = 0)Isotope 2 **Hyperfine Structure** Counts $\rightarrow \mu$ \rightarrow Q_s $\rightarrow <\beta_2 >$ shape of the nucleus →Nuclear Spin (I > 0, 1/2)Isotope 3 entroid Counts spherical prolate (cigar shape) Relative Frequency (MHz)

D. Rodriguez et al., Eur. Phys. J. Special Topics 183 (2010) 1

Isotope shift, hyperfine structure,

charge radii and nuclear moments

LEB – from GeV to keV

A.-K. Rink, Ion Catcher and MR-TOF-MS for NUSTAR Experiments

LEB – from GeV to keV

Arrows show direction of force

Cryogenic Stopping Cell

TOF Mass Spectrometry in Nuclear Physics

Enables high performance

Fast \rightarrow access to very short-lived ions (T_{1/2} ~ ms) Sensitive, broadband, non-scanning \rightarrow efficient, access to rare ions Mass resolving power and accuracy almost mass-independent

Conventional TOF-MS achieve medium mass resolving power only

 \rightarrow Solution to achieve high mass resolving power and accuracy:

Multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS)

H. Wollnik et al., Int. J. Mass Spectrom. Ion Processes 96 (1990) 267

Multiple-Reflection Time-of-Flight Mass Spectrometer

10/04/2015

Multiple-Reflection Time-of-Flight Mass Spectrometer

Mass Measurement Accuracy

~10⁻⁷

Transmission efficiency

up to 70%

Sensitivity

~10 ions

Isobar separator with high ion capacity

 $>10^6$ ions/s

T. Dickel et al., NIM A 777 (2015) 172 - 188

10/04/2015

M.I. Yavor, et al., Int. J. Mass Spectrom. (2015), http://dx.doi.org/10.1016/j.ijms.2015.01.002

10/04/2015

A.-K. Rink, Ion Catcher and MR-TOF-MS for NUSTAR Experiments

11

FRS Ion Catcher

Commissioning Experiments

A.-K. Rink, Ion Catcher and MR-TOF-MS for NUSTAR Experiments

FRS Ion Catcher Results: Extraction Time (221Ac)

A.-K. Rink, Ion Catcher and MR-TOF-MS for NUSTAR Experiments

15

10/04/2015

Commissioning Experiments

Uranium Fission Fragments

Commissioning Experiments

10/04/2015

A.-K. Rink, Ion Catcher and MR-TOF-MS for NUSTAR Experiments

Extracting and measuring 2+ charge states

10/04/2015

A.-K. Rink, Ion Catcher and MR-TOF-MS for NUSTAR Experiments

Isomer separation

10/04/2015

A.-K. Rink, Ion Catcher and MR-TOF-MS for NUSTAR Experiments

Isomer separation

T. Dickel et al., PL B (2015)

Future Stopping Cell

New challenges

Higher requirements to stop the ions

Due to higher beam intensities and more exotic nuclei

With future design:

5x higher areal density 5x faster 10³ higher rates

Conclusion & Outlook

High stopping and extraction efficiencies for areal densities up to **6.3mg/cm²**

Successful stopping of fission and projectile fragments With total efficiencies of $\sim 30\%$

Fast extraction times (220Ra2+,17.9ms)

High mass resolving power enables spatial separation of isomer states

Cryogenic Stopping Cell for the Super-FRS Low Energy Branch is design

A.-K. Rink, Ion Catcher and M

5x higher areal density 5x faster 10³ higher rates

periments

Acknowledgement

FRS Ion Catcher / S411 Collaboration

F. Amjad², S. Ayet², J. Bergmann¹, P. Dendooven³, T. Dickel^{1,2}, M. Diwisch¹, J. Ebert¹, A. Estrade², F. Farinon², H. Geissel^{1,2},
F. Greiner¹, E. Haettner¹, F.Heiße², C.Hornung¹, C. Jesch¹, N. Kalantar-Nayestanaki³, R. Knoebel², J. Kurcewicz², J. Lang¹,
W.Lippert¹, I. Miskun², I. Moore⁴, I. Mukha², C. Nociforo², M. Petrick¹, M. Pfuetzner², S. Pietri², A. Pikhtelev⁵, W.R. Plaß^{1,2}, I. Pohjalainen⁴, A. Prochazka², S. Purushothaman², M. Ranjan³, M.P. Reiter¹, A.-K. Rink¹, S. Rinta-Antila⁴,
C. Scheidenberger², M. Takechi², Y. Tanaka², H. Weick², J.S. Winfield², X.Xiaodong^{1,2}, M.I. Yavor⁶

¹ II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany, ² GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany ³ KVI, University of Groningen, The Netherlands, ⁴ University of Jyväskylä, Jyväskylä, Finland, ⁵ Institute for Energy Problems of Chemical Physics, RAS, Chernogolovka, Russia, ⁶ Institute for Analytical Instrumentation, RAS, St. Petersburg, Russia

