Nucleosynthesis of Mo and Ru isotopes in v-driven winds

NAVI Physics Days, GSI, 26-27 February 2015

Julia Bliss, Almudena Arcones

Neutrino-driven winds

- neutrino-driven winds follow core-collapse supernovae ٠
- nuclear statistical equilibrium (NSE) at the beginning ٠
- alpha-rich freeze out ٠
- formation of ¹²C ٠
- alpha-process → seed nuclei •

Nucleosynthesis in neutrino-driven winds

wind parameters: entropy, expansion timescale, electron fraction

[Hoffman et al. 1996, Meyer et al. 1994, Qian & Woosley 1996, Freiburghaus et. al 1999]

Nucleosynthesis in neutrino-driven winds

reference case

Arcones & Bliss 2014

Lighter Element Primary Process

[Travaglio et al. 2004, Montes et al. 2007, Arcones & Montes 2011]

Sr, Y, Zr

Molybdenum and ruthenium isotopes

- largest number of stable isotopes among lighter heavy elements
- similar structures:
 - **p-only:** ^{92,94}Mo and ^{96,98}Ru
 - **s-, r-mixed:** ^{95,97,98}Mo, ^{99,101,102}Ru
 - s-only: ⁹⁶Mo and ¹⁰⁰Ru
 - **r-only:** ¹⁰⁰Mo and ¹⁰⁴Ru

• several astrophysical sites failed to produce solar system ratios of ^{92,94}Mo and ^{96,98}Ru

→ see e.g. O/Ne layers in type II SNe (Prantzos et al. 1990, Rayet et al. 1995), slightly neutron-rich winds (Hoffman et al. 1996, Wanajo 2006), proton-rich winds (Fisker et al. 2008, Wanajo 2006)

- SiC X grains exhibit different isotopic ratios of ^{95,97}Mo than in the solar system
 - \rightarrow see Pellin et al. 1999

- neutron-rich winds:
 - charged-particle reactions
- proton-rich winds:
 - vp-process

- neutron-rich winds:
 - charged-particle reactions
- proton-rich winds:
 - vp-process

- neutron-rich winds:
 - charged-particle reactions
- proton-rich winds:
 - vp-process

- neutron-rich winds:
 - charged-particle reactions
- proton-rich winds:
 - vp-process

- no formation in neutron-rich conditions
- synthesis in proton-rich winds similar to ^{92,94}Mo
- abundances are very sensitive to trajectory timescale

- no formation in neutron-rich conditions
- synthesis in proton-rich winds similar to ^{92,94}Mo
- abundances are very sensitive to trajectory timescale

Solar system abundances of p-isotopes: ^{92,94}Mo and ^{96,98}Ru

- no set of wind parameters produces simultaneously both solar system ratios:
 - combination of wind parameters is required to explain ratios based on winds
 - contributions of other sites, e.g. type la supernovae

Solar system abundances of p-isotopes: ^{92,94}Mo and ^{96,98}Ru

- no set of wind parameters produces simultaneously both solar system ratios:
 - combination of wind parameters is required to explain ratios based on winds
 - contributions of other sites, e.g. type la supernovae

Solar system abundances of p-isotopes: ^{92,94}Mo and ^{96,98}Ru

- no set of wind parameters produces simultaneously both solar system ratios:
 - combination of wind parameters is required to explain ratios based on winds
 - contributions of other sites, e.g. type la supernovae

----- $Y_{\odot}(^{92}Mo)/Y_{\odot}(^{94}Mo) = 1.57, ----- Y_{\odot}(^{96}Ru)/Y_{\odot}(^{98}Ru) = 2.97$

-- $Y_{\odot}(^{92}Mo)/Y_{\odot}(^{94}Mo) = 1.57$, _____ $Y_{\odot}(^{96}Ru)/Y_{\odot}(^{98}Ru) = 2.97$

----- $Y_{\odot}(^{92}Mo)/Y_{\odot}(^{94}Mo) = 1.57, ----- Y_{\odot}(^{96}Ru)/Y_{\odot}(^{98}Ru) = 2.97$

----- $Y_{\odot}(^{92}Mo)/Y_{\odot}(^{94}Mo) = 1.57, ----- Y_{\odot}(^{96}Ru)/Y_{\odot}(^{98}Ru) = 2.97$

····· $Y_{\odot}({}^{92}Mo)/Y_{\odot}({}^{94}Mo) = 1.57, - Y_{\odot}({}^{96}Ru)/Y_{\odot}({}^{98}Ru) = 2.97$

similar wind conditions lead to SoS ratio for Mo and Ru p-isotopes

SoS ratio for Mo and Ru p-isotopes

similar wind conditions lead to SoS ratio for Mo and Ru p-isotopes

challenge: trajectory that leads to the ^{92,94}Mo solar system ratio but does not produce too much ^{96,98}Ru and vice versa

production factor:
$$P(i) = \frac{X_i}{X_{i,\odot}} \cdot \frac{M_{ej}^{traj}}{M_{ej}^{tot}}$$

production factor:
$$P(i) = \frac{X_i}{X_{i,\odot}} \cdot \underbrace{M_{ej}^{traj}}_{\sim M_{ej}^{tot}} \approx 10$$
 [Timmes et al. 1995, Woosley et al. 1995]

production factor:
$$P(i) = \frac{X_i}{X_{i,\odot}} \cdot \underbrace{M_{ej}^{traj}}_{\sim M_{ej}^{tot}} \approx 10$$
 [Timmes et al. 1995, Woosley et al. 1995]

production factor:
$$P(i) = \frac{X_i}{X_{i,\odot}} \cdot \underbrace{M_{ej}^{traj}}_{\sim M_{ej}^{tot}} \approx 10$$
 [Timmes et al. 1995, Woosley et al. 1995]

 $Y_{\odot}(^{92}Mo)/Y_{\odot}(^{94}Mo) = 1.57$ is fulfilled

 $Y_{\odot}(^{92}Mo)/Y_{\odot}(^{94}Mo) = 1.57$ is fulfilled

Nucleosynthesis of s-, r-isotopes: 95,97Mo

- formation in neutron-rich winds
- neutron-capture processes close to stability
- similar abundance pattern for ^{98,100}Mo and ^{99,101,102,104}Ru

Nucleosynthesis of s-, r-isotopes: 95,97Mo

- formation in neutron-rich winds
- neutron-capture processes close to stability
- similar abundance pattern for ^{98,100}Mo and ^{99,101,102,104}Ru

Solar system and SiC X abundances of ^{95,97}Mo

SiC X → silicon carbide grains of type X

- presolar grains recovered from meteorites
- condensation within type Ia or II SNe
- ^{95,97}Mo are enhanced in SiC X:

 $Y_{sic x}({}^{95}Mo)/Y_{sic x}({}^{97}Mo)=1.83$ [Pellin et al. 1999] ${}^{0.430}_{0.485}$

Y_☉(⁹⁵Mo)/Y_☉(⁹⁷Mo)=1.67 [Lodders 2003]

- no similar enhancement in ^{96,98,100}Mo
 - → differs from pure r- or s-process
- possible origin:
 - neutron burst in supernova zones (see Meyer et al. 2000)
 - neutrino-driven wind

→ but Y_{0-s}(⁹⁵Mo)/Y_{0-s}(⁹⁷Mo)=1.88

Solar system and SiC X abundances of ^{95,97}Mo

SiC X → silicon carbide grains of type X

- presolar grains recovered from meteorites
- condensation within type Ia or II SNe
- ^{95,97}Mo are enhanced in SiC X:

 $Y_{sic x}({}^{95}Mo)/Y_{sic x}({}^{97}Mo)=1.83$ [Pellin et al. 1999] ${}^{0.430}_{0.485}$

Y_☉(⁹⁵Mo)/Y_☉(⁹⁷Mo)=1.67 [Lodders 2003]

- no similar enhancement in ^{96,98,100}Mo
 - → differs from pure r- or s-process
- possible origin:
 - neutron burst in supernova zones (see Meyer et al. 2000)
 - neutrino-driven wind
 - → but Y_{0-s}(⁹⁵Mo)/Y_{0-s}(⁹⁷Mo)=1.88

Solar system and SiC X abundances of ^{95,97}Mo

- - → differs from pure r- or s-process
- possible origin:
 - neutron burst in supernova zones (see Meyer et al. 2000)
 - neutrino-driven wind
 - → but Y_{☉-s}(⁹⁵Mo)/Y_{☉-s}(⁹⁷Mo)=1.88

 $Y_{SiC X}(^{95}Mo)/Y_{SiC X}(^{97}Mo) = 1.83$ is fulfilled

 $Y_{SiC X}(^{95}Mo)/Y_{SiC X}(^{97}Mo) = 1.83$ is fulfilled

 $Y_{SiC X}(^{95}Mo)/Y_{SiC X}(^{97}Mo) = 1.83$ is fulfilled

not all neutrino-driven winds can have such wind parameters
→ overproduction

Summary

- neutrino-driven winds produce solar Y(⁹²Mo)/Y(⁹⁴Mo)
 - in neutron- and proton-rich conditions
- synthesis of solar Y(⁹⁶Ru)/Y(⁹⁸Ru) in proton-rich

winds

- neutrino-driven winds important: origin of solar system ^{92,94}Mo and ^{96,98}Ru
- → BUT other sites (e.g., type la supernovae, (Travaglio et al. 2014))

 solar and SiC X Y(⁹⁵Mo)/Y(⁹⁷Mo) in neutron-rich winds

Summary

- neutrino-driven winds produce solar Y(⁹²Mo)/Y(⁹⁴Mo)
 - in neutron- and proton-rich conditions
- synthesis of solar Y(⁹⁶Ru)/Y(⁹⁸Ru) in proton-rich

winds

- neutrino-driven winds important: origin of solar system ^{92,94}Mo and ^{96,98}Ru
- → BUT other sites (e.g., type la supernovae, (Travaglio et al. 2014))
- solar and SiC X Y(⁹⁵Mo)/Y(⁹⁷Mo) in neutron-rich

winds

Thank you very much for your attention