in the outer layers of supernovae

A. Sieverding¹, L. Huther¹, G. Martínez-Pinedo¹, K. Langanke^{1,2}, A. Heger³

1 Technische Universität Darmstadt

 2 GSI Helmholtzzentrum, Darmstadt 3 Monash Centre for Astrophysics, Melbourne

NAVI Physics Days, GSI, Darmstadt, Germany 27 Feb. 2015

Outline

- Introduction
 - Neutrino nucleosynthesis
 - Supernova model
- 2 Results
 - Production of ⁷Li, ¹¹B, ¹⁹F, ¹³⁸La, ¹⁸⁰Ta
 - Radioactive nuclei
- Summary and Outlook

Neutrinos and Supernovae

- Massive stars can produce elements up to Fe in hydrostatic burning phases
- The stellar core collapses when the nuclear fuel is depleted
- Collapse stops when nuclear densities are reached
- Hydrodynamic shock triggers explosive nucleosynthesis and ejects the outer layers
- Cooling core emitts neutrinos
- Neutrinos can influence the nucleosynthesis in outer layers of SNe

(Not to scale) from Wikimedia commons

- Emission of 10⁵⁹ Neutrinos from the collapsing core
- $\langle E_{\nu} \rangle \approx 7-13 \; \text{MeV}$
- $\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_{\mu,\tau}} \rangle$
- Charged-current and neutral-current interactions
- Particle evaporation
- Capture of spallation products

Charged current (CC)

$$\begin{array}{ccc} {}^A_ZN + \nu_e & \rightarrow & {}^A_{Z+1}N^* + e^- \\ {}^A_ZN + \bar{\nu}_e & \rightarrow & {}^A_{Z-1}N^* + e^+ \end{array}$$

Neutral current (NC)

$$\begin{array}{cccc} {}^{A}ZN + \nu_{x} & \rightarrow & {}^{A}ZN^{*} + \nu_{x}' \\ {}^{A}ZN^{*} & \rightarrow & {}^{A-1}ZN + n \\ {}^{A}ZN^{*} & \rightarrow & {}^{A-1}ZN + p \\ {}^{A}ZN^{*} & \rightarrow & {}^{A-4}ZN + \alpha \\ {}^{A}ZN^{*} & \rightarrow & {}^{A-4}ZN + \alpha \end{array}$$

- Heating by the supernova shock triggers photodissociation and subsequent particle capture reactions
- ullet nucleosynthesis occurs mainly in regions with sufficient neutrino fluxes but still moderate post-shock temperatures

- Heating by the supernova shock triggers photodissociation and subsequent particle capture reactions
- ullet nucleosynthesis occurs mainly in regions with sufficient neutrino fluxes but still moderate post-shock temperatures
- Main candidates for neutrino nucleosynthesis:

```
<sup>7</sup>Li and <sup>11</sup>B via <sup>4</sup>He(\nu_x,\nu_x' p/n) and <sup>12</sup>C(\nu_x,\nu_x' p) ...
```

- Heating by the supernova shock triggers photodissociation and subsequent particle capture reactions
- ullet nucleosynthesis occurs mainly in regions with sufficient neutrino fluxes but still moderate post-shock temperatures
- Main candidates for neutrino nucleosynthesis:

7
Li and 11 B via 4 He $(\nu_{x},\nu_{x}'$ p/n) and 12 C $(\nu_{x},\nu_{x}'$ p) ...

¹⁹**F** via ²⁰Ne(
$$\nu_x, \nu_x'$$
 p/n)

- Heating by the supernova shock triggers photodissociation and subsequent particle capture reactions
- ullet nucleosynthesis occurs mainly in regions with sufficient neutrino fluxes but still moderate post-shock temperatures
- Main candidates for neutrino nucleosynthesis:

$$^7 \text{Li}$$
 and $^{11} \text{B}$ via $^4 \text{He}(\nu_{\scriptscriptstyle X}, \nu_{\scriptscriptstyle X}' \text{ p/n})$ and $^{12} \text{C}(\nu_{\scriptscriptstyle X}, \nu_{\scriptscriptstyle X}' \text{ p})$...

¹⁹**F** via ²⁰Ne(
$$\nu_x, \nu_x'$$
 p/n)

¹³⁸**La** and ¹⁸⁰**Ta** via ¹³⁸Ba(
$$\nu_e$$
,e⁻) and ¹⁸⁰Hf(ν_e ,e⁻)

Updated physics input

- Neutrino-nucleus cross-sections have been calculated for almost the whole nuclear chart (L. Huther 2014, PhD. Thesis)
- Simulations including detailed neutrino transport give new estimates for typical neutrino energies:
 - $\langle E_{\nu} \rangle =$ 8-13 MeV compared to 13-25 MeV
- Results from various stellar evolution calculations are available (e.g. Heger et al. 2002, Limongi et al. 2006)

Supernova model

 Parametrization of temperature and density evolution during the explosion (Woosley et al. 1990)

•
$$T_{\text{Peak}} = 2.4 \times 10^9 \mathrm{K} \, imes \left(\frac{E_{\text{expl}}}{10^{51} \text{erg}} \right)^{1/4} imes \left(\frac{R}{10^9 \mathrm{cm}} \right)^{-3/4}$$

Wooslev et al. 2002

Supernova model

 Parametrization of temperature and density evolution during the explosion (Woosley et al. 1990)

$$\bullet \ \, \textit{T}_{\text{Peak}} = 2.4 \times 10^9 \mathrm{K} \ \, \times \left(\frac{\textit{E}_{\text{expl}}}{10^{51} \text{erg}}\right)^{1/4} \times \left(\frac{\textit{R}}{10^9 \mathrm{cm}}\right)^{-3/4}$$

Woosley et al. 2002

Neutrino flux

- Exponentially decreasing neutrino luminosity
- Thermal Fermi-Dirac spectrum

Outline

- Introduction
 - Neutrino nucleosynthesis
 - Supernova model
- 2 Results
 - Production of ⁷Li, ¹¹B, ¹⁹F, ¹³⁸La, ¹⁸⁰Ta
 - Radioactive nuclei
- Summary and Outlook

Production factors normalized to ¹⁶O

ullet 25 M_{\odot} progenitor with solar metallicity

Nucleus	no $ u$	present work	Heger et al. (2005)
⁷ Li	0.0004	0.11	-
¹¹ B	0.003	0.8	1.18
¹⁹ F	0.06	0.24	0.32
¹³⁸ La	0.03	0.63	0.90
¹⁸⁰ Ta	0.14	1.80	4.24

- present work: $\langle E_{\nu_e} \rangle = 8.8$ MeV, $\langle E_{\bar{\nu}_e,\nu_x} \rangle = 12.6$ MeV
- ullet Heger et al.: $\langle E_{
 u_e,ar
 u_e}
 angle=12.6$ MeV, $\langle E_{
 u_{
 m x}}
 angle=18.9$ MeV

Production factors normalized to ¹⁶O

• 15 M_☉ progenitor with solar metallicity

Nucleus	no ν	present work	Heger et al. (2005)
⁷ Li	0.001	0.12	_
¹¹ B	0.007	1.43	1.88
¹⁹ F	1.11	1.14	0.60
¹³⁸ La	0.07	0.67	0.97
¹⁸⁰ Ta	0.06	1.14	2.75

- present work: $\langle E_{\nu_e} \rangle = 8.8$ MeV, $\langle E_{\bar{\nu}_e,\nu_x} \rangle = 12.6$ MeV
- ullet Heger et al.: $\langle E_{
 u_e,ar
 u_e}
 angle=$ 12.6 MeV, $\langle E_{
 u_{
 m x}}
 angle=$ 18.8 MeV

Production factors normalized to ¹⁶O

 $\bullet~15~M_{\odot}$ progenitor with solar metallicity

Nucleus	no ν	present work	Heger et al. (2005)
⁷ Li	0.001	0.12	_
¹¹ B	0.007	1.43	1.88
¹⁹ F	1.11	1.14	0.60
¹³⁸ La	0.07	0.67	0.97
¹⁸⁰ Ta	0.06	1.14	2.75

- present work: $\langle E_{\nu_e} \rangle = 8.8$ MeV, $\langle E_{\bar{\nu}_e,\nu_x} \rangle = 12.6$ MeV
- ullet Heger et al.: $\langle E_{
 u_e,ar
 u_e}
 angle=$ 12.6 MeV, $\langle E_{
 u_{
 m x}}
 angle=$ 18.8 MeV

Importance of neutrinos for the production of ¹⁹F

- Without neutrinos:
 - H- and He-shell burning create regions enriched in ¹⁸O and ¹⁵N

Without neutrinos:

- H- and He-shell burning create regions enriched in ¹⁸O and ¹⁵N
- ► High shock temperatures enhance $^{15}N(\alpha,\gamma)$ and $^{18}O(p,\gamma)$

Without neutrinos:

- H- and He-shell burning create regions enriched in ¹⁸O and ¹⁵N
- ► High shock temperatures enhance $^{15}N(\alpha,\gamma)$ and $^{18}O(p,\gamma)$
- Very sensitive to temperature

- Without neutrinos:
 - H- and He-shell burning create regions enriched in ¹⁸O and ¹⁵N
 - ► High shock temperatures enhance ${}^{15}N(\alpha,\gamma)$ and ${}^{18}O(p,\gamma)$
 - Very sensitive to temperature
- Neutral-current neutrino reactions on ²⁰Ne

Production factor of ¹⁹F normalized to ¹⁶O

Production of ¹⁹F for a 15 M_☉ progenitor

Initial conditions

Production of ¹⁹F for a 15 M_☉ progenitor

Explosive nucleosynthesis without neutrinos

Production of ¹⁹F for a 15 M_☉ progenitor

• Including neutrino interactions

Production of ¹⁹F for a 25 M_☉ progenitor

 With the 25 M_☉ progenitor the neutrino-induced production dominates

Comparision with other progenitor models

- Less massive stars tend to produce more ¹⁹F by thermonuclear processes
- while neutrinos become more important with increasing mass

Comparision with other progenitor models

- Less massive stars tend to produce more ¹⁹F by thermonuclear processes
- while neutrinos become more important with increasing mass
- Large sensitivity to stellar modelling and, neutrino fluxes and spectra

Outline

- Introduction
 - Neutrino nucleosynthesis
 - Supernova model
- 2 Results
 - Production of ⁷Li, ¹¹B, ¹⁹F, ¹³⁸La, ¹⁸⁰Ta
 - Radioactive nuclei
- Summary and Outlook

γ -ray astronomy

Isotope	Decaytime	Decay Chain	γ-Ray Energy (keV)
⁷ Be	77 d	$^{7}\mathrm{Be} \rightarrow ^{7}\mathrm{Li}^{*}$	478
56Ni	111 d	⁵⁶ Ni → ⁵⁶ Co* → ⁵⁶ Fe*+e+	847, 1238
⁵⁷ Ni	390 d	⁵⁷ Co→ ⁵⁷ Fe*	122
²² Na	3.8 y	$^{22}\text{Na} \rightarrow ^{22}\text{Ne*} + \text{e}^{+}$	1275
⁴⁴ Ti	89 y	⁴⁴ Ti→ ⁴⁴ Sc*→ ⁴⁴ Ca*+e+	1157, 78, 68
26 A]	1.04 10 ⁶ y	$^{26}\text{Al} \rightarrow ^{26}\text{Mg*} + e^+$	1809
⁶⁰ Fe	2.0 10 ⁶ y	⁶⁰ Fe → ⁶⁰ Co*	1173, 1332

γ -ray astronomy

Isotope	Decaytime	Decay Chain	γ-Ray Energy (keV)
⁷ Be	77 d	$^{7}\mathrm{Be} \rightarrow ^{7}\mathrm{Li}^{*}$	478
56 Ni	111 d	⁵⁶ Ni → ⁵⁶ Co* → ⁵⁶ Fe*+e+	847, 1238
⁵⁷ Ni	390 d	⁵⁷ Co→ ⁵⁷ Fe*	122
²² Na	3.8 y	22 Na $\rightarrow ^{22}$ Ne* + e+	1275
⁴⁴ Ti	89 y	⁴⁴ Ti→ ⁴⁴ Sc*→ ⁴⁴ Ca*+e+	1157, 78, 68
26 A l	1.04 10 ⁶ y	$^{26}\text{Al} \rightarrow ^{26}\text{Mg*} + e^+$	1809
⁶⁰ Fe	2.0 10 ⁶ y	⁶⁰ Fe → ⁶⁰ Co*	1173, 1332

Sensitivity to the progenitor mass

Production of ²²Na

Different mechanisms:

- indirect enhancement of p-captures
- direct charged-current channel

Different mechanisms:

- indirect enhancement of p-captures
- direct charged-current channel
- direct neutral-current channels

- Different mechanisms:
 - indirect enhancement of p-captures
 - direct charged-current channel
 - direct neutral-current channels
- Balance of the different channels is sensitive to stellar structure and neutrino spectra

Production channels for ²⁶ Al

Galactic ²⁶Al emission with INTEGRAL SPI

Bouchet et al. (2015)

• Different mechanisms:

- enhancement of p-captures
- charged-current channel
- ► neutral-current channels

Production of ^{26}AI for a 15 M_{\odot} progenitor

Production of ²⁶Al for a 15 M_☉ progenitor

Production of ²⁶Al for a 15 M_☉ progenitor

Summary

- Neutrino-nucleosynthesis study including an extended set of neutrino-nucleus reactions
- Calculations with updated neutrino spectra
- ► Explore the sensitivity to stellar structure and composition
- \blacktriangleright Study the effects on nuclei that are relevant for $\gamma\text{-ray}$ astronomy, like $^{22}\mathrm{Na}$ and $^{26}\mathrm{Al}$

Summary

- Neutrino-nucleosynthesis study including an extended set of neutrino-nucleus reactions
- Calculations with updated neutrino spectra
- ► Explore the sensitivity to stellar structure and composition
- \blacktriangleright Study the effects on nuclei that are relevant for $\gamma\text{-ray}$ astronomy, like $^{22}\mathrm{Na}$ and $^{26}\mathrm{Al}$

Outlook

- ► Include the neutrino interactions in Hydrodynamic Simulation
- Study a larger range of progenitor models, especially lower mass
- Explore effects of metallicity
- ▶ Use time-dependent neutrino spectra
- ► Effects of neutrino oscillations

Thank you, for your attention

Neutrino cross sections

- Two step process: Excitation and decay
- $\sigma_{X \to Y}^k(E_\nu) = \sum_i \sigma_i^{RPA}(X) \times P_k(Y)$

- Excitation spectra from RPA
- Decay rates from Hauser-Feshbach statistical models
- Including evaporation of up to 4 particles

L. Huther, PhD Thesis TU Darmstadt, 2014 ARI AO7

MOD-SI

RPA

Stellar composition

Supernova model

- Thermodynamic parametrization
- ullet Temperature and density constant until the passage of the shock at t_0
- Peak temperature in the shock: $T_P = E_{\rm expl}^{1/4} \times R^{-3/4}$
- ullet Exponential decrease of temperature with time scale $au_{dyn} \propto rac{1}{\sqrt{
 ho_{
 m initial}}}$
- Expansion with constant velocity of 5000 km/s
- Explosion energy of 10⁵¹ ergs

Parametrization of the supernova event

• Example for thermodynamic trajectory

Description of ν emission

- ullet Decreasing Luminosity $L_
 u \propto \exp\left(-rac{t}{ au_
 u}
 ight)$
- Isotropic emission
- Emission of 10⁵³ ergs for each flavour
- Fermi-Dirac distributed energies,

$$\langle E_{\nu} \rangle = 3.15 \times T_{\nu}$$

- $T_{\nu_e} = 4 \text{ MeV}$
- $ightharpoonup T_{\bar{\nu}_e} = 4 \text{ MeV}$
- ► $T_{\nu_{\mu,\tau}} = 8 \text{ MeV}$
- Description taken from Wooslev and Weaver 1990 (The ν-process, ApJ:356.272)

