in the outer layers of supernovae A. Sieverding¹, L. Huther¹, G. Martínez-Pinedo¹, K. Langanke^{1,2}, A. Heger³ 1 Technische Universität Darmstadt 2 GSI Helmholtzzentrum, Darmstadt 3 Monash Centre for Astrophysics, Melbourne NAVI Physics Days, GSI, Darmstadt, Germany 27 Feb. 2015 ### Outline - Introduction - Neutrino nucleosynthesis - Supernova model - 2 Results - Production of ⁷Li, ¹¹B, ¹⁹F, ¹³⁸La, ¹⁸⁰Ta - Radioactive nuclei - Summary and Outlook ## Neutrinos and Supernovae - Massive stars can produce elements up to Fe in hydrostatic burning phases - The stellar core collapses when the nuclear fuel is depleted - Collapse stops when nuclear densities are reached - Hydrodynamic shock triggers explosive nucleosynthesis and ejects the outer layers - Cooling core emitts neutrinos - Neutrinos can influence the nucleosynthesis in outer layers of SNe (Not to scale) from Wikimedia commons - Emission of 10⁵⁹ Neutrinos from the collapsing core - $\langle E_{\nu} \rangle \approx 7-13 \; \text{MeV}$ - $\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_{\mu,\tau}} \rangle$ - Charged-current and neutral-current interactions - Particle evaporation - Capture of spallation products ### Charged current (CC) $$\begin{array}{ccc} {}^A_ZN + \nu_e & \rightarrow & {}^A_{Z+1}N^* + e^- \\ {}^A_ZN + \bar{\nu}_e & \rightarrow & {}^A_{Z-1}N^* + e^+ \end{array}$$ ### Neutral current (NC) $$\begin{array}{cccc} {}^{A}ZN + \nu_{x} & \rightarrow & {}^{A}ZN^{*} + \nu_{x}' \\ {}^{A}ZN^{*} & \rightarrow & {}^{A-1}ZN + n \\ {}^{A}ZN^{*} & \rightarrow & {}^{A-1}ZN + p \\ {}^{A}ZN^{*} & \rightarrow & {}^{A-4}ZN + \alpha \\ {}^{A}ZN^{*} & \rightarrow & {}^{A-4}ZN + \alpha \end{array}$$ - Heating by the supernova shock triggers photodissociation and subsequent particle capture reactions - ullet nucleosynthesis occurs mainly in regions with sufficient neutrino fluxes but still moderate post-shock temperatures - Heating by the supernova shock triggers photodissociation and subsequent particle capture reactions - ullet nucleosynthesis occurs mainly in regions with sufficient neutrino fluxes but still moderate post-shock temperatures - Main candidates for neutrino nucleosynthesis: ``` ⁷Li and ¹¹B via ⁴He(\nu_x,\nu_x' p/n) and ¹²C(\nu_x,\nu_x' p) ... ``` - Heating by the supernova shock triggers photodissociation and subsequent particle capture reactions - ullet nucleosynthesis occurs mainly in regions with sufficient neutrino fluxes but still moderate post-shock temperatures - Main candidates for neutrino nucleosynthesis: 7 Li and 11 B via 4 He $(\nu_{x},\nu_{x}'$ p/n) and 12 C $(\nu_{x},\nu_{x}'$ p) ... ¹⁹**F** via ²⁰Ne($$\nu_x, \nu_x'$$ p/n) - Heating by the supernova shock triggers photodissociation and subsequent particle capture reactions - ullet nucleosynthesis occurs mainly in regions with sufficient neutrino fluxes but still moderate post-shock temperatures - Main candidates for neutrino nucleosynthesis: $$^7 \text{Li}$$ and $^{11} \text{B}$ via $^4 \text{He}(\nu_{\scriptscriptstyle X}, \nu_{\scriptscriptstyle X}' \text{ p/n})$ and $^{12} \text{C}(\nu_{\scriptscriptstyle X}, \nu_{\scriptscriptstyle X}' \text{ p})$... ¹⁹**F** via ²⁰Ne($$\nu_x, \nu_x'$$ p/n) ¹³⁸**La** and ¹⁸⁰**Ta** via ¹³⁸Ba($$\nu_e$$,e⁻) and ¹⁸⁰Hf(ν_e ,e⁻) ## Updated physics input - Neutrino-nucleus cross-sections have been calculated for almost the whole nuclear chart (L. Huther 2014, PhD. Thesis) - Simulations including detailed neutrino transport give new estimates for typical neutrino energies: - $\langle E_{\nu} \rangle =$ 8-13 MeV compared to 13-25 MeV - Results from various stellar evolution calculations are available (e.g. Heger et al. 2002, Limongi et al. 2006) ## Supernova model Parametrization of temperature and density evolution during the explosion (Woosley et al. 1990) • $$T_{\text{Peak}} = 2.4 \times 10^9 \mathrm{K} \, imes \left(\frac{E_{\text{expl}}}{10^{51} \text{erg}} \right)^{1/4} imes \left(\frac{R}{10^9 \mathrm{cm}} \right)^{-3/4}$$ Wooslev et al. 2002 ## Supernova model Parametrization of temperature and density evolution during the explosion (Woosley et al. 1990) $$\bullet \ \, \textit{T}_{\text{Peak}} = 2.4 \times 10^9 \mathrm{K} \ \, \times \left(\frac{\textit{E}_{\text{expl}}}{10^{51} \text{erg}}\right)^{1/4} \times \left(\frac{\textit{R}}{10^9 \mathrm{cm}}\right)^{-3/4}$$ Woosley et al. 2002 #### Neutrino flux - Exponentially decreasing neutrino luminosity - Thermal Fermi-Dirac spectrum ### Outline - Introduction - Neutrino nucleosynthesis - Supernova model - 2 Results - Production of ⁷Li, ¹¹B, ¹⁹F, ¹³⁸La, ¹⁸⁰Ta - Radioactive nuclei - Summary and Outlook ### Production factors normalized to ¹⁶O ullet 25 M_{\odot} progenitor with solar metallicity | Nucleus | no $ u$ | present work | Heger et al. (2005) | |-------------------|---------|--------------|---------------------| | ⁷ Li | 0.0004 | 0.11 | - | | ¹¹ B | 0.003 | 0.8 | 1.18 | | ¹⁹ F | 0.06 | 0.24 | 0.32 | | ¹³⁸ La | 0.03 | 0.63 | 0.90 | | ¹⁸⁰ Ta | 0.14 | 1.80 | 4.24 | - present work: $\langle E_{\nu_e} \rangle = 8.8$ MeV, $\langle E_{\bar{\nu}_e,\nu_x} \rangle = 12.6$ MeV - ullet Heger et al.: $\langle E_{ u_e,ar u_e} angle=12.6$ MeV, $\langle E_{ u_{ m x}} angle=18.9$ MeV ### Production factors normalized to ¹⁶O • 15 M_☉ progenitor with solar metallicity | Nucleus | no ν | present work | Heger et al. (2005) | |-------------------|----------|--------------|---------------------| | ⁷ Li | 0.001 | 0.12 | _ | | ¹¹ B | 0.007 | 1.43 | 1.88 | | ¹⁹ F | 1.11 | 1.14 | 0.60 | | ¹³⁸ La | 0.07 | 0.67 | 0.97 | | ¹⁸⁰ Ta | 0.06 | 1.14 | 2.75 | - present work: $\langle E_{\nu_e} \rangle = 8.8$ MeV, $\langle E_{\bar{\nu}_e,\nu_x} \rangle = 12.6$ MeV - ullet Heger et al.: $\langle E_{ u_e,ar u_e} angle=$ 12.6 MeV, $\langle E_{ u_{ m x}} angle=$ 18.8 MeV ### Production factors normalized to ¹⁶O $\bullet~15~M_{\odot}$ progenitor with solar metallicity | Nucleus | no ν | present work | Heger et al. (2005) | |-------------------|----------|--------------|---------------------| | ⁷ Li | 0.001 | 0.12 | _ | | ¹¹ B | 0.007 | 1.43 | 1.88 | | ¹⁹ F | 1.11 | 1.14 | 0.60 | | ¹³⁸ La | 0.07 | 0.67 | 0.97 | | ¹⁸⁰ Ta | 0.06 | 1.14 | 2.75 | - present work: $\langle E_{\nu_e} \rangle = 8.8$ MeV, $\langle E_{\bar{\nu}_e,\nu_x} \rangle = 12.6$ MeV - ullet Heger et al.: $\langle E_{ u_e,ar u_e} angle=$ 12.6 MeV, $\langle E_{ u_{ m x}} angle=$ 18.8 MeV # Importance of neutrinos for the production of ¹⁹F - Without neutrinos: - H- and He-shell burning create regions enriched in ¹⁸O and ¹⁵N #### Without neutrinos: - H- and He-shell burning create regions enriched in ¹⁸O and ¹⁵N - ► High shock temperatures enhance $^{15}N(\alpha,\gamma)$ and $^{18}O(p,\gamma)$ #### Without neutrinos: - H- and He-shell burning create regions enriched in ¹⁸O and ¹⁵N - ► High shock temperatures enhance $^{15}N(\alpha,\gamma)$ and $^{18}O(p,\gamma)$ - Very sensitive to temperature - Without neutrinos: - H- and He-shell burning create regions enriched in ¹⁸O and ¹⁵N - ► High shock temperatures enhance ${}^{15}N(\alpha,\gamma)$ and ${}^{18}O(p,\gamma)$ - Very sensitive to temperature - Neutral-current neutrino reactions on ²⁰Ne ## Production factor of ¹⁹F normalized to ¹⁶O # Production of ¹⁹F for a 15 M_☉ progenitor Initial conditions # Production of ¹⁹F for a 15 M_☉ progenitor Explosive nucleosynthesis without neutrinos # Production of ¹⁹F for a 15 M_☉ progenitor • Including neutrino interactions # Production of ¹⁹F for a 25 M_☉ progenitor With the 25 M_☉ progenitor the neutrino-induced production dominates ## Comparision with other progenitor models - Less massive stars tend to produce more ¹⁹F by thermonuclear processes - while neutrinos become more important with increasing mass ## Comparision with other progenitor models - Less massive stars tend to produce more ¹⁹F by thermonuclear processes - while neutrinos become more important with increasing mass - Large sensitivity to stellar modelling and, neutrino fluxes and spectra ### Outline - Introduction - Neutrino nucleosynthesis - Supernova model - 2 Results - Production of ⁷Li, ¹¹B, ¹⁹F, ¹³⁸La, ¹⁸⁰Ta - Radioactive nuclei - Summary and Outlook ### γ -ray astronomy | Isotope | Decaytime | Decay Chain | γ-Ray Energy (keV) | |------------------|------------------------|---|--------------------| | ⁷ Be | 77 d | $^{7}\mathrm{Be} \rightarrow ^{7}\mathrm{Li}^{*}$ | 478 | | 56Ni | 111 d | ⁵⁶ Ni → ⁵⁶ Co* → ⁵⁶ Fe*+e+ | 847, 1238 | | ⁵⁷ Ni | 390 d | ⁵⁷ Co→ ⁵⁷ Fe* | 122 | | ²² Na | 3.8 y | $^{22}\text{Na} \rightarrow ^{22}\text{Ne*} + \text{e}^{+}$ | 1275 | | ⁴⁴ Ti | 89 y | ⁴⁴ Ti→ ⁴⁴ Sc*→ ⁴⁴ Ca*+e+ | 1157, 78, 68 | | 26 A] | 1.04 10 ⁶ y | $^{26}\text{Al} \rightarrow ^{26}\text{Mg*} + e^+$ | 1809 | | ⁶⁰ Fe | 2.0 10 ⁶ y | ⁶⁰ Fe → ⁶⁰ Co* | 1173, 1332 | ### γ -ray astronomy | Isotope | Decaytime | Decay Chain | γ-Ray Energy (keV) | |------------------|------------------------|---|--------------------| | ⁷ Be | 77 d | $^{7}\mathrm{Be} \rightarrow ^{7}\mathrm{Li}^{*}$ | 478 | | 56 Ni | 111 d | ⁵⁶ Ni → ⁵⁶ Co* → ⁵⁶ Fe*+e+ | 847, 1238 | | ⁵⁷ Ni | 390 d | ⁵⁷ Co→ ⁵⁷ Fe* | 122 | | ²² Na | 3.8 y | 22 Na $\rightarrow ^{22}$ Ne* + e+ | 1275 | | ⁴⁴ Ti | 89 y | ⁴⁴ Ti→ ⁴⁴ Sc*→ ⁴⁴ Ca*+e+ | 1157, 78, 68 | | 26 A l | 1.04 10 ⁶ y | $^{26}\text{Al} \rightarrow ^{26}\text{Mg*} + e^+$ | 1809 | | ⁶⁰ Fe | 2.0 10 ⁶ y | ⁶⁰ Fe → ⁶⁰ Co* | 1173, 1332 | ## Sensitivity to the progenitor mass ### Production of ²²Na #### Different mechanisms: - indirect enhancement of p-captures - direct charged-current channel #### Different mechanisms: - indirect enhancement of p-captures - direct charged-current channel - direct neutral-current channels - Different mechanisms: - indirect enhancement of p-captures - direct charged-current channel - direct neutral-current channels - Balance of the different channels is sensitive to stellar structure and neutrino spectra ## Production channels for ²⁶ Al Galactic ²⁶Al emission with INTEGRAL SPI Bouchet et al. (2015) #### • Different mechanisms: - enhancement of p-captures - charged-current channel - ► neutral-current channels # Production of ^{26}AI for a 15 M_{\odot} progenitor # Production of ²⁶Al for a 15 M_☉ progenitor # Production of ²⁶Al for a 15 M_☉ progenitor ### Summary - Neutrino-nucleosynthesis study including an extended set of neutrino-nucleus reactions - Calculations with updated neutrino spectra - ► Explore the sensitivity to stellar structure and composition - \blacktriangleright Study the effects on nuclei that are relevant for $\gamma\text{-ray}$ astronomy, like $^{22}\mathrm{Na}$ and $^{26}\mathrm{Al}$ ### Summary - Neutrino-nucleosynthesis study including an extended set of neutrino-nucleus reactions - Calculations with updated neutrino spectra - ► Explore the sensitivity to stellar structure and composition - \blacktriangleright Study the effects on nuclei that are relevant for $\gamma\text{-ray}$ astronomy, like $^{22}\mathrm{Na}$ and $^{26}\mathrm{Al}$ #### Outlook - ► Include the neutrino interactions in Hydrodynamic Simulation - Study a larger range of progenitor models, especially lower mass - Explore effects of metallicity - ▶ Use time-dependent neutrino spectra - ► Effects of neutrino oscillations Thank you, for your attention ### Neutrino cross sections - Two step process: Excitation and decay - $\sigma_{X \to Y}^k(E_\nu) = \sum_i \sigma_i^{RPA}(X) \times P_k(Y)$ - Excitation spectra from RPA - Decay rates from Hauser-Feshbach statistical models - Including evaporation of up to 4 particles L. Huther, PhD Thesis TU Darmstadt, 2014 ARI AO7 MOD-SI **RPA** ## Stellar composition ## Supernova model - Thermodynamic parametrization - ullet Temperature and density constant until the passage of the shock at t_0 - Peak temperature in the shock: $T_P = E_{\rm expl}^{1/4} \times R^{-3/4}$ - ullet Exponential decrease of temperature with time scale $au_{dyn} \propto rac{1}{\sqrt{ ho_{ m initial}}}$ - Expansion with constant velocity of 5000 km/s - Explosion energy of 10⁵¹ ergs ## Parametrization of the supernova event • Example for thermodynamic trajectory ## Description of ν emission - ullet Decreasing Luminosity $L_ u \propto \exp\left(- rac{t}{ au_ u} ight)$ - Isotropic emission - Emission of 10⁵³ ergs for each flavour - Fermi-Dirac distributed energies, $$\langle E_{\nu} \rangle = 3.15 \times T_{\nu}$$ - $T_{\nu_e} = 4 \text{ MeV}$ - $ightharpoonup T_{\bar{\nu}_e} = 4 \text{ MeV}$ - ► $T_{\nu_{\mu,\tau}} = 8 \text{ MeV}$ - Description taken from Wooslev and Weaver 1990 (The ν-process, ApJ:356.272)