p-process: status of the experimental program at GANIL

Giacomo Randisi GANIL

Navi Physics Days February 26-27th, GSI

2 Experimental techniques

- **3** Selected Reactions
- **4** Conclusions and Perspectives

p-nuclei 00000 Experimental techniques

Selected Reaction

Conclusions and Perspectives O

Origin of p-nuclei

- Originally suggested by B²HF (E. M. Burbidge *et al.*, Rev. Mod. Phys. 29, 547 (1957)) to explain the small fraction of p-nuclei compared to *s* and *r* abundances
- (γ ,n), (γ ,p),(γ , α) reactions and their inverse in Supernova shock front
- (γ, n) reactions at $T \ge 10^9$ K $\Rightarrow (\gamma, p), (\gamma, \alpha)$ and inverse maintaining the flow $\Rightarrow \beta$ decay bringing to final p-nuclei abundances M. Arnould and S. Goriely, Phys. Rep. 384, 1 (2003)

S. Goriely, Astron. Astrophys. 342, 881 (1999) Mass Number A E. Anders and N. Grevesse, Geochim. Cosm. Acta 53, 197 (1989)

p-nuclei	Experimental techniques	Selected Reactions	Conclusions and Perspectives
00000			
Understan	ding the p-nuclei ab	undances	

Proposed scenarios

• O/Ne Layers of massive stars ($\approx 25 \text{ M}_{\odot}$) during Supernova Type II* explosions (1.7 $\leq T_9 \leq 3.3$)

S. E. Woosley and W. M. Howard, ApJS 36, 285 (1978)
 M. Rayet *et al.*, Astron. Astrophys. 298, 517 (1995)

• Supernova Type la** ($1.5 \leqslant T_9 \leqslant 3.7$)

W. M. Howard *et al.*, ApJL 373, L5 (1991)C. Travaglio *et al.*, ApJ 739, 93 (2011)

• Recently : ν p-process, neutrino-driven wind (1.0 $\leq T_9 \leq 3.0$)

R. D. Hoffman *et al.*, ApJ 460, 478 (1996)

- C. Fröhlich et al., PRL 96, 142502 (2006)
- * SNII = Core-Collapse Supernova ** SNIa = Explosion from Dwarf-Giant Binary system

M. Rayet et al., Astron. Astrophys. 298, 517 (1995)

- Most of abundances reproduced within a factor 3
- Mo, Ru, In, Sn, La, Gd still strongly underproduced

p-nuclei
0000

Experimental techniques

Selected Reactions

Conclusions and Perspectives O

Sensitivity studies

Reaction network calculations

Rapp et al., ApJ 653, 474 (2006)

- Fixed astrophysical input
- Variation of (γ, p) , (γ, α) rates and their inverse
- Strong effects observed for specific reactions ⇒ Need data in the relevant energy range
- Often better to measure (x,γ) reactions and deduce time-reverse (γ,x) rates

Selected Reactions with strong impact on abundances

(p, γ)	(p, n)	(α, γ)
72 Ge $(p, \gamma)^{73}$ As	⁷⁶ Ge(<i>p</i> , <i>n</i>) ⁷⁶ As	$^{70}Ge(lpha,\gamma)^{74}Se$
$^{74}Ge(p,\gamma)^{75}As$	⁷⁵ As(<i>p</i> , <i>n</i>) ⁷⁵ Se	$^{92}Mo(lpha,\gamma)^{96}Ru$
$^{77}Br(p,\gamma)^{78}Kr$	⁸⁵ Rb(<i>p</i> , <i>n</i>) ⁸⁵ Sr	$^{102}Pd(\alpha,\gamma)^{106}Cd$
$^{83}Rb(p,\gamma)^{84}Sr^{\dagger}$	⁸⁶ Kr(<i>p</i> , <i>n</i>) ⁸⁶ Rb	$^{106}Cd(lpha,\gamma)^{110}Sn$

00000	Experimental techniques OOOOOOO	OOOO	Conclusions and Perspectives O
Experime	ental techniques		
	3	2	beam
p, α be	am Z S	heavy beam 3	
	we we		neavy recoil
	heavy target	light tar	get

Direct kinematics measurements

- $\bullet~$ Intense p/ $\alpha~$ low-energy beams
- Recoils are stopped in the target or backing
- Not applicable for (most) radioactive targets
- Techniques : In-beam (Angular Distribution, γ-summing) and Activation
- Facilities : Mostly Tandem/Linac (Bochum, Atomki, Demokritos, SPIRAL2-NFS etc)
- Equipments : X and γ-ray detectors

Inverse kinematics measurements

- Stable/radioactive beams
- Recoil separators, storage rings

(H. He)

- Gas (often windowless) targets
- Techniques : In-beam and Activation
- Facilities : TRIUMF, MSU, GSI, GANIL-SP2
- Equipments : DRAGON, LISE-FULIS, GSI-ESR

Experimental techniqu
0000000

Inverse kinematics measurements @ GANIL

Lol S. Harissopulos, F. de Oliveira, PhD of P. Ujic

- Velocity selection \Rightarrow beam rejection
- Ideally collecting all the charge states
- $\Delta v \sim 5$ % between primary beam and CN
- ToF vs ΔE Identification using a lonisation Chamber (up to 10^5 pps)

- $\bullet~^4\text{He}$ ions implanted in a 0.2- μm Al target (N_0(He) $\approx 10^{16}\text{cm}^{-2})$
- Primary beam rejection factor $\sim 10^{10}$
- Intense locus cannot be explained by scattering on He and AI (2000 pps observed, 150 expected)
- Inhomogeneities + dust particles (1-10 µm) ⇒ beam energy loss calculations give ~ 2000 pps in the intense locus ! ⇒ need a "windowless" gas target
- July 2014 : development tests for a windowless gas target + new design to obtain $N_0 \ge 10^{16} cm^{-2}$
- New in-beam test scheduled on July 2015 : ${
 m ^{58}Ni+p/\alpha}$ @ 4.7 AMeV

p-process: status of the experimental program at GANIL

Direct kinematics measurements with proton and α beams @ NFS

(G. Randisi, B. Bastin)

	Experimental techniques	Selected Reactions	Conclusions and Perspectives
	0000000		
Opportunities	with NFS		

• SPIRAL2-Ph1 will provide intense p/α beams at energies relevant for astrophysics

- 1 to 100 p μ A for Day-One experiments
- $E_{lab} \geqslant 0.75 \text{ AMeV}$
- Unique opportunity at NFS to measure σ down to nb

List of "Day-One" measurements

(p, γ)	(p, n)	(α, γ)
$^{72}Ge(p,\gamma)^{73}As$	76 Ge(<i>p</i> , <i>n</i>) 76 As	$^{70}Ge(lpha,\gamma)^{74}Se$
$^{74} ext{Ge}(p,\gamma)^{75} ext{As}$	$^{75}As(p, n)^{75}Se$	$^{92}Mo(lpha,\gamma)^{96}Ru$
$^{77}Br(p,\gamma)^{78}Kr^{(rt)}$	⁸⁵ Rb(<i>p</i> , <i>n</i>) ⁸⁵ Sr	$^{102}Pd(lpha,\gamma)^{106}Cd$
${}^{83}Rb(p,\gamma){}^{84}Sr^{(rt)}$	⁸⁶ Kr(<i>p</i> , <i>n</i>) ⁸⁶ Rb	$^{106}Cd(lpha,\gamma)^{110}Sn$

Blue : relevant energy window is partially/not covered

Red : No Data !!

Black : Already measured

 $^{(\mathit{rt})}$ Radioactive target \Rightarrow not possible in direct kinematics

p-nuclei 00000 Experimental techniques

Selected Reactions

Conclusions and Perspectives O

Activation (AC)

Advantages

- Lower background compared to in-beam measurements (no in-beam radiation)
- Selectivity (especially in case of E.C.)
- Possibility to further reduce background using $\gamma \gamma$ or $X \gamma$ coincidences.

Drawbacks

- Possible only for radioactive products
- Difficult for long $T_{1/2}$ ($\gtrsim 1$ month)
- On-line/off-line setup (shielding needed for off-line)

p-nuclei Experimental techniques Selected Reactions OCOCO

Advantages

- $d\sigma(\theta)/d\Omega \Rightarrow$ spins + partial cross sections \Rightarrow constraint on HF calculations
- γ Identification
- High resolution

Drawbacks

- Low efficiency
- Need High angular coverage (Ω,θ)
- High in-beam background from isotopic contaminations/chemical impurities from target/backing ⇒ target enrichment required

HORUS array (Köln)

G. Randisi

p-process: status of the experimental program at GANIL

p-nuclei 00000 Experimental techniques

Selected Reactions 0000

Conclusions and Perspectives O

In-beam : γ -summing (GS)

Advantages

- High geometrical efficiency ($\sim 4\pi$)
- Direct measurement of the total integrated cross sections
- Fast measurement

4π spectrometer working principle

Drawbacks

- Complex response function ⇒ detailed simulations required (sum peak efficiency ε_Σ)
- High Background (as for AD method + large Compton) ⇒ target enrichment required
- No γ -ID for a single transition
- Lower resolution compared to AD method

p-nuclei 00000 Experimental techniques

Selected Reactions 0000

Conclusions and Perspectives O

In-beam : γ -summing (GS)

Advantages

- High geometrical efficiency ($\sim 4\pi$)
- Direct measurement of the total integrated cross sections
- Fast measurement

Drawbacks

- Complex response function ⇒ detailed simulations required (sum peak efficiency ε_Σ)
- High Background (as for AD method + large Compton) ⇒ target enrichment required
- No γ -ID for a single transition
- Lower resolution compared to AD method

	Experimental techniques	Selected		Conclusions and Perspecti	
00000	0000000	0000			
How to improve accuracy?					
Need to me	easure accurately $1 \; nb \leqslant \sigma \leqslant$	≤1 mb ⇒	$I_{p,lpha} \geqslant 1 \; p\muA$, $\rho x < 1 \text{ mg/cm}^2$	h.

- $\textbf{0} \ \gamma \ \text{detection} \Rightarrow \text{high efficiency needed} \Rightarrow \text{large coverage}$
- $\textbf{O} Low background \Rightarrow high isotopic/chemical purity for target/backing$
- Selectivity (Channel/transition ID)
- Versatility (Stable/radioactive products)

	AD	GS	AC
Efficiency	х	\checkmark	×
Low bckg	х	х	\checkmark
Selectivity	\checkmark	х	\checkmark
Versatility	\checkmark	\checkmark	x

Experimental techniques	Selected Reactions	Conclusions and Perspectives
	0000	

$\mathbf{1}^{st}$ campaign : activation measurements

 $\begin{array}{c|c} & & & & \\ \hline p \text{-nuclei} & & & & \\ \hline 0 \text{ occ} & & & & \\ \hline 0 \text{ occ} & & & & \\ \hline 0 \text{ occ} & & & & \\ \hline 0 \text{ occ} & & & & \\ \hline \end{array} \\ \hline \begin{array}{c} & & & \\ \hline 7^2 \text{Ge}(\mathbf{p}, \gamma) : \text{ cross section calculations} \end{array} \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} & & \\ \hline 0 \text{ occ} & & \\ \hline \end{array} \\ \hline \end{array}$

Theoretical calculations $\sigma(\mathbf{p}+^{70,72}\text{Ge})$: TALYS vs NON-SMOKER

- Different OMPs/NDLs for TALYS
 - Phenomenological : Koning-Delaroche OMP, Fermi-Gas NLD
 - Semi-microscopic : JLM (folding) OMP, Goriely's (Skyrme) NLD
- Cross-check with NON-SMOKER (JLM+Fermi) & 70 Ge(p, γ) exp. data
 - G. G. Kiss et al., PRC 76, 055807 (2007)
- Shaded area \Rightarrow Relevant Energy Range for $1.5 \leqslant$ $\mathcal{T}_9 \leqslant 3.5$
 - T. Rauscher, PRC 81, 045807 (2010)

Experimental techniques	Selected Reactions	Conclusions and Perspectives
	0000	

2nd campaign : in-beam measurements

- ${}^{70}\text{Ge}(\alpha,\gamma){}^{74}\text{Se}: \mathbf{1}^{st}$ step
- ${}^{92}\mathrm{Mo}(\alpha,\gamma){}^{96}\mathrm{Ru}$
- 102 Pd(α, γ) 106 Cd : Unmeasured !
- ${}^{106}\mathrm{Cd}(\alpha,\gamma){}^{110}\mathrm{Sn}$
- 74 Se, 96 Ru, 106 Cd are stable products \Rightarrow In-beam Measurement
- α -capture \Rightarrow very low cross sections $\Rightarrow \gamma$ -summing for highest efficiency?
- Caveat : Need high purity samples + accurate knowledge of the response function !

Shaded Area : Relevant Energy Range for $1.5 \leqslant$ $T_9 \leqslant 3.5$

p-nuclei 00000 Experimental techniques

Selected Reactions

Conclusions and Perspectives O

4.077

● Previously measured for 4.7 ≤ E_{cm} ≤ 7.4 Z. Fülöp *et al.*, ZPA 355, 203 (1996)

- $I_{\rho} = 1 \text{ p}\mu\text{A}, \ \rho x = 36\mu\text{g}/\text{cm}^2$ on thin Au backing
- $\sigma(4.7 \text{ MeV}) = 0.40(22) \mu \text{b}$

⁷⁰Ge(α , γ) @ NFS

- σ for 3.5 \leq E_{cm} \leq 5 MeV?
- $\sigma_{th}(4 \text{ MeV}) = 1 10 \text{ nb}$ \Rightarrow uniquely possible with NFS intensities !
- 635-keV level fed by most of transitions \Rightarrow Small angular-distribution correction needed
- The same kind of setup (2 HPGe's) would allow to measure $\sigma(4 \text{ MeV})$ in $\sim 1 \text{ UT}$ using $I_{\rho} \sim 100 \text{ p}\mu\text{A}$
- Accuracy strongly dependent on efficiency \Rightarrow need simulations
- Experimental response and background with/without target at NFS commissioning

p-process: status of the experimental program at GANIL

Summary	& Perspectives		-
	Experimental techniques	Selected Reactions	Conclusions and Person

Conclusions

- Reactions with strong impact on p-nuclei abundances have been identified and studied
- Theoretical TALYS/NON-SMOKER calculations have been performed for a series of high-impact reactions
- The effect of different nuclear physics inputs has been studied
- Need cross-section measurements to constrain reaction network calculations
- SPIRAL2-NFS p/ α beams : a unique opportunity to measure cross sections at energies relevant for the p-process in direct kinematics
- Several physics cases for an experimental campaign are proposed

Perspectives

- 72 Ge(p, γ) activation measurement
- Simulations for in-beam setup for (α, γ) reactions (Master student)
- Proposal for activation measurements @ NFS
- Lol for in-beam measurements @ NFS
- Test for (α, γ) reactions in inverse kinematics @ FULIS (July)

ectives

Collaboration			
00000			
	Experimental techniques	Selected Reactions	Conclusions and Perspectives

GANIL

G. Randisi, B. Bastin, F. de Oliveira Santos, X. Ledoux

GSI & Goethe Universität Frankfurt

R. Reifarth, J. Glorius

IFIN Bucharest C. Borcea, D. Ghita

Rez Nuclear Physics Institute J. Mrazek

The NAVI Collaboration

Thank you for your attention

Annexe

^{Annexe} ●○○ (p,n) reactions : ⁸⁶Kr(p,n)⁸⁶Rb

Annexe ⊙•⊙ Reminder : Hauser-Feshback Calculations

Tests of a Windowless Gas Target (July 2014)

- Goal : optimize target configuration to obtain $N_0 \geqslant 10^{16} cm^{-2}$
- $\bullet\,$ Measure energy loss of α 's on Argon at different pressures/configurations
- $\Delta E = 2 \pm 1$ keV on 5cm-thick cell @ 1 mbar ($\Delta E_{th} = 4keV$ @ $N_0 = 10^{16} cm^{-2}$) \Rightarrow lower gas density in the cell
- Hard to obtain a localized flow at low pressure with differential vacuum
- Need "jet"-type configuration ⇒ new design ongoing

Annexe