

New capabilities for mass measurements of n-rich nuclei at TITAN/TRIUMF

Timo Dickel

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Germany

- Production of Exotic Nuclei
- The MR-TOF @ TITAN:
 - Novel Concept
 - Results
- FRS Ion Catcher
 - Isomeric Beams
- Summary

Why Mass Measurements?

Production of Exotic Nuclei

Production of Exotic Nuclei: In-flight

Protons (Z)

Production of Exotic Nuclei: ISOL

Protons (Z)

Production of Exotic Nuclei: ISOL

Protons (Z)

Possible Solutions for Isobaric Contaminations

ISAC Mass Separator $\Phi = 135^{\circ}$ Magnetic Separator D =1000 mm low resolving power (~2000) High Voltage Platform Ion Guide/Trap Resonant Laser Ionization Source Element specific Low efficiency: ~% <u>∩</u>⊕ Mass-sellective Cooling in Penning trap High mass resolving power B Low ion capacity (<1000 ions/s) and long separation time (>100ms) Penning trap DC plus magnetic field MR-TOF-MS Fast (~ms) Universal • High ion capacity and mass resolving powe

•

•

Motivation: TOF Mass Spectrometry in Nuclear Physics

Enables high performance

- Fast \rightarrow access to very short-lived ions (T_{1/2} ~ ms)
- Sensitive, broadband, non-scanning \rightarrow efficient, access to rare ions
- Mass resolving power and accuracy almost mass-independent

Conventional TOF-MS achieve medium mass resolving power only \rightarrow Solution to achieve high mass resolving power and accuracy:

Multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS)

H. Wollnik et al., Int. J. Mass Spectrom. Ion Processes 96 (1990) 267

Applications in nuclear physics

- Direct mass measurements of exotic nuclei
- High-resolution isobar separator

C. Scheidenberger et al., Hyperfine Interact. 132 (2001) 531

W.R. Plaß et al., NIM B 266 (2008) 4560

• Diagnostics measurements: Monitor production, separation and low-energy beam preparation of exotic nuclei W.R. Plaß et al., Int. J. Mass Spectrom. 394 (2013) 134

TRIUMF's Ion Trap for Atomic and Nuclear Science

TRIUMF's Ion Trap for Atomic and Nuclear Science

J. Dilling et al., NIMB 204 (2003) 492

How to Integrate the MR-TOF-MS in the TITAN Beamline

Conceptual Desgin

Conceptual Desgin

Standard MR-TOF Isobar separator separation based on convertion of time in spatial spread by Bradbury-Nielsen Gate W.R. Plaß et al., NIM B 266 (2008) 4560

not possible due to space constrains

First Novel Concept: Mass Selective Re-Trapping

bunching, cooling, retrapping in the same trap → compact system

MR-TOF-MS @ TITAN

From Giessen to Vancouver

On the TITAN platform

Early Commissioning of the MR-TOF-MS for TITAN

• Full insatllation in the TITAN beamline underway

PhD thesis C. Jesch

What is Possible: Results from the Prototype

Isobarically clean beams of almost all nuclei produced at ISOL facilities can be provided. Mass measurement of many short-lived low-lying isomeres becomes possible

PhD thesis J. Lang

FRS Ion Catcher

Mass Measurement: Uranium Projectile Fragments

Isomeric Beams

Measurement of isomers

- Identification of ²¹¹Po and ^{211m}Po
- Measurement of excitation energy
- Measurement of isomeric ratio

- Separation using the ion gate of the MR-TOF-MS
- Proof-of-principle: production of isomerically clean beams

Mass Measurement: Uranium Fission Fragments

T. Dickel, New capabilities for mass measurements of n-rich nuclei at TITAN/TRIUMF, NAVI 2015, 26 February, Darmstadt

Summary and Outlook

MR-TOF-MS open new possibilities at ISOL and In-Flight facilities

ISOL / MR-TOF@TITAN:

isobar separation with "zero space in the beamline" only possible due to novel concepts

- Mass selective retrapping
- enables access to more than 350 nuclei
- enables access to short-lived nuclei (~ms).

Envisaged Experiments

- Nuclear astrophysics, nuclear structure, fundamental interactions:
- n-rich Ca,K,Sc: appearance of N=32,34 shell closure?
- ⁹⁸⁻¹⁰¹In: V_{ud}, rp-process
- r-process: Kr, Sr, Rb, Xe Cs
- ¹³⁰Cd,In: N=82 shell gap, shell evolution

Summary and Outlook

MR-TOF-MS open new possibilities at ISOL and In-Flight facilities

In-Flight / FRS Ion Catcher:

- Universal and fast
- Highest Resolving Power
- Isomeric Beams

Acknowledgements

FRS Ion Catcher / S411 Collaboration

S. Ayet², T. Dickel^{1,2}, P. Dendooven³, M. Diwisch¹, J. Ebert¹, H. Geissel^{1,2}, F. Greiner¹,
E. Haettner¹, F.Heiße², C. Hornung, C. Jesch¹, N. Kalantar-Nayestanaki³, R. Knoebel²,
J. Lang¹, W.Lippert¹, I. Miskun², I. Moore⁴, A. Pikhtelev⁵, W.R. Plaß^{1,2}, S. Pietri², I.
Pohjalainen⁴, A. Prochazka², S. Purushothaman², M. Ranjan³, M.P. Reiter¹, A.-K. Rink¹,
C. Scheidenberger², M. Takechi², Y. Tanaka², H. Weick², J.S. Winfield², X.Xu^{1,2}, M.I. Yavor⁶

Funding: BMBF (06GI185I, 06GI9114I, 05P12RGFN8), the state of Hessen (LOEWE Center HICforFAIR), Univ. Groningen and GSI and JLU Gießen and GSI under the JLU-GSI strategic Helmholtz partnership agreement. Collaboration agreement JLU/TRIUMF, by the Helmholtz Association (HGF) through the Nuclear Astrophysics Virtual Institute (VH-VI-417)