ν -matter interaction in CCSNe and NS mergers

Albino Perego

in collaboration with

M. Hempel, K. Ebinger, M. Eichler, M. Liebendörfer, F.-K. Thielemann (Uni Basel),

S. Rosswog, O. Korobkin (Uni Stockholm), A. Arcones, D. Martin (TU-Darmstadt),

C. Fröhlich (NCSU)

albino.perego@physik.tu-darmstadt.de

TU-Darmstadt, IKP-Theory

u -matter interaction in CCSN and BNS mergers - NAVI meeting @ GSI, Darmstadt, 26 February 2015 – p. 1/48

Neutrino matter interaction

 ν 's are weakly interacting particles:

dashed lines: $\lambda_{
u} =$ 1 ly , R_{\odot} , 100 km

Astrophysical scenarios

CCSN supernovae

- ν 's have a crucial role and can potentially trigger explosion
- effective spherically symmetric model for CCSN explosions: PUSH

Perego, Hempel, Frölich, Ebinger, Eichler, Casanova, Liebendörfer, Thielemann

arXiv150102845P

Binary NS mergers

- ν 's can trigger matter ejection
- 3D model of ν -driven wind in binary NS merger aftermath

Perego, Rosswog, Cabezon, Korobkin, Käppeli, Arcones, Liebenörfer

MNRAS, V. 443, p. 3134-3156

CCSN: a brief overview

CCSNe: end of the life of massive stars ($M \gtrsim 8 M_{\odot}$)

e.g., Bethe 90

enrich the host galaxy with nucleosynthetic yields

Bliss', Wu's, Sievering's talks

- inject $E_{\rm kin} \sim 10^{51} {\rm erg/event}$ in the interstellar medium
- produce compact remnants (NS or BH)
- present large variety of properties (connections with progenitor properties?)

CCSN: a brief overview

CCSNe: end of the life of massive stars ($M \gtrsim 8 M_{\odot}$)

e.g., Bethe 90

25

25

enrich the host galaxy with SN 2009kr Explosion Energy [B] SN 1993 nucleosynthetic yields SN 2012ec Bliss', Wu's, Sievering's talks SN 2004/ • inject $E_{\rm kin} \sim 10^{51} {\rm erg/event}$ in the 0.5 SN 2005 10 20 interstellar medium ZAMS Progenitor Mass [M] 0.12 produce compact remnants 0.1 ⁵⁶Ni Mass [M_☉] 0 0 (NS or BH) SN 19874 SN 2004et SN 20-SN 2004A present large variety of properties 0.02 (connections with progenitor prop-10 15 20 erties?) ZAMS Progenitor Mass [M] Bruenn+14

CCSN modeling

e.g. Burrows 13, Janka 12, Fischer's talk

robust basic picture

Intense u emission ($L \lesssim 10^{53} \mathrm{erg/s}$)

- still uncertainties in the explosion mechanism
- plausible mechanism: delayed v-driven explosion Wilson 85

Core Collapse scenario by R.J. Hall, Wikipedia

- spherically symmetric (1D) models with detailed
 ν-transport fail (in general) to explode
 Liebendörfer+04, Thompson+03, Rampp & Janka 02
- multi-D hydro instabilities can play a crucial role, enhancing ν heating

Nordhaus+10, Hanke+12, Couch+13, Dolence+13, ...

- however, no consensus (so far) on multi-D results
- multi-D + detailed v-transport increase computational costs

www.rzg.mpg.de

CCSN modeling

e.g. Burrows 13, Janka 12, Fischer's talk

Janka 01

- spherically symmetric (1D) models with detailed ν-transport fail (in general) to explode Liebendörfer+04, Thompson+03, Rampp & Janka 02
- multi-D hydro instabilities can play a crucial role, enhancing ν heating

Nordhaus+10, Hanke+12, Couch+13, Dolence+13, ...

- however, no consensus (so far) on multi-D results
- multi-D + detailed v-transport increase computational costs

www.rzg.mpg.de

PUSH basic idea

Our goal: To provide a 1D model to trigger CCSN explosions, following ν -driven explosion paradigm and employing $\nu_e, \bar{\nu}_e$ transport + nuclear EoS

Basic idea:

To tap a fraction of the $\nu_{\mu,\tau}$ luminosity inside the gain region to enhance neutrino absorption

What's it good for?

- to perform broad parameter studies (e.g., progenitor masses and metallicity)
- to study explosive nucleosynthesis, based on detailed ν transport
- to explore explosion properties and their connection with progenitor properties

PUSH at work

free parameters:

- $t_{\rm off} = 1 \sec \gg t_{\rm expl}$
- $k_{\rm push} \sim 1$
- $50 \,\mathrm{ms} \lesssim t_{\mathrm{rise}} \lesssim 250 \,\mathrm{ms}$

Calibration strategy

search for $(k_{\text{push}}, t_{\text{rise}})$ and M_{prog} that reproduces SN1987A observables

Blinnikov+00,Seitenzahl+14,Fransson & Kozma 02

E_{expl}	$(1.1 \pm 0.3) \times 10^{51} \text{ erg}$
$M_{ m prog}$	$18-21 M_{\odot}$
m(⁵⁶ Ni $)$	$(0.071 \pm 0.003) M_{\odot}$
m(⁵⁷ Ni $)$	$(0.0041 \pm 0.0018) M_{\odot}$
m(⁵⁸ Ni $)$	$0.006 M_{\odot}$
$m({}^{44}\text{Ti})$	$(0.55 \pm 0.17) \times 10^{-5} M_{\odot}$

exploration of 16 progenitors (18-21 M_{\odot}), at solar metallicity

WHW 02

compactness parameter:

$$\xi_{1.75} = \frac{1.75}{R(1.75M_{\odot})/1000\,\mathrm{km}}$$

O'Connor & Ott 11

 $E_{
m expl} \gtrsim 1.0 imes 10^{51} \, {
m erg}$ for $\xi_{1.75} > 0.4$ (HC)

Calibration strategy

search for (k_{push}, t_{rise}) and M_{prog} that reproduces SN1987A observables

Blinnikov+00,Seitenzahl+14,Fransson & Kozma 02

E_{expl}	$(1.1 \pm 0.3) \times 10^{51} \text{ erg}$
$M_{ m prog}$	$18-21 M_{\odot}$
m(⁵⁶ Ni $)$	$(0.071 \pm 0.003) M_{\odot}$
m(⁵⁷ Ni $)$	$(0.0041 \pm 0.0018) M_{\odot}$
m(⁵⁸ Ni $)$	$0.006 M_{\odot}$
$m({}^{44}\text{Ti})$	$(0.55 \pm 0.17) \times 10^{-5} M_{\odot}$

exploration of 16 progenitors (18-21 M_{\odot}), at solar metallicity

WHW 02

compactness parameter:

$$\xi_{1.75} = \frac{1.75}{R(1.75M_{\odot})/1000\,\mathrm{km}}$$

O'Connor & Ott 11

 $E_{
m expl} \gtrsim 1.0 imes 10^{51} \, {
m erg}$ for $\xi_{1.75} > 0.4$ (HC)

Results without fallback

4 HC progenitors (18.0,19.2,19.4,20.6)

Abundances: Post-processing of innermost ejecta with WinNet (full nuclear network)

calibration set: X

Results with fallback

4 HC progenitors (18.0,19.2,19.4,20.6) + 0.1 M_{\odot} of late fallback Abundances: Post-processing of innermost ejecta with WinNet (full nuclear network)

calibration set: 18 M_{\odot} , $k_{\rm push}=3.5$, $t_{\rm rise}=200\,{\rm ms}$, $M_{\rm fallback}=0.1M_{\odot}$

ν-matter interaction in CCSN and BNS mergers - NAVI meeting @ GSI, Darmstadt, 26 February 2015 – p. 10/48

Calibration discussion

Fallback

 $M_{\mathrm{fallback}} pprox 0.1 M_{\odot}$ in agreement with

- Iong term simulations of 1D explosions
 Ugliano+12
- requirement of a large fallback to submerge the *B* field and hide the NS Chevalier98

⁵⁷⁻⁵⁸Ni abundances

- significant production of ⁵⁷⁻⁵⁸Ni requires slightly n-rich ejecta
- this requires mass-cut inside the Si shell
- possible constraint on progenitors and t_{expl}

Compact remnant

- $M_{\rm remn,grav} = 1.50 M_{\odot}$
- $M_{\rm remn, bar} = 1.66 M_{\odot}$ $< M_{\rm max, DD2} = 2.92 M_{\odot}$
- BH formation would require $\approx 1.3 M_{\odot}$ additional fallback

⁴⁴Ti abundance

All models with fallback underproduce ⁴⁴Ti. Uncertainties in

ejecta mixing

• nuclear physics (${}^{44}\text{Ti}(lpha, p)$ ${}^{47}\text{V}$)

can increase abundance up to $\times 4$, reducing the discrepancy

let's assume that two CCSNe explode in a stellar binary system, leaving behind 2 NSs in a binary system

e.g. Rosswog 15, Bauswein's talk

Final stage of a binary NS (BNS) system evolution:

double BNS systems do exist

PSR	Р	P_b	a sin i	е	$\dot{\omega}$	M	$ au_{ m GW}$
	ms	days	lt-s		deg yr $^{-1}$	${\sf M}_{\odot}$	Gyr
		Double ne	utron sta	r binaries	3		
B1913+16	59.0	0.323	2.34	0.617	4.227	2.83	0.31
B1534+12	37.9	0.421	3.73	0.274	1.756	2.75	2.69
B2127+11C	30.5	0.335	2.52	0.681	4.457	2.71	0.22
J1518+4904	40.9	8.634	20.04	0.249	0.011	2.62	9600
J1811-1736	104.2	18.779	34.78	0.828	0.009	2.6	1700
J0737-3039A	22.7	0.102	1.42	0.088	16.88	2.58	0.087
J0737-3039B	2773.5	0.102	1.51	0.088		2.58	0.087
J1829+2456	41.0	1.17	7.24	0.14	0.28	2.53	60
J1756-2251	28.5	0.319	2.75	0.18	2.59	2.57	1.7
Neutron star–white dwarf binaries							
B2303+46	1066.4	12.34	32.69	0.66	0.010	2.53	4500
J1141-6545	393.9	0.20	1.86	0.17	5.33	2.30	0.59

PSR1913+16 periastron shift

millisecond pulsars in relativistic binaries

Credit: Weisberg+2010, Lorimer

e.g. Rosswog 15, Bauswein's talk

Final stage of a binary NS (BNS) system evolution:

- double BNS systems do exist
- inspiral phase, driven by GW emission

$$t_{\rm insp} \approx 10^7 {\rm yr} \left(\frac{T_{\rm orb}}{1{\rm h}}\right) \left(\frac{M}{M_{\odot}}\right)^{-2/3} \left(\frac{\mu}{M_{\odot}}\right)^{-1} \left(1-e^2\right)^{-7/2}.$$

(see, e.g., Lorimer 2005)

- $T_{\rm orb}$ orbital period
- M total mass
- μ reduced mass
- *e* eccentricity

Θ

<u>т</u> б e.g. Rosswog 15, Bauswein's talk

Final stage of a binary NS (BNS) system evolution:

- double BNS systems do exist
- inspiral phase, driven by GW emission
- coalescence phase

B field from a SPH simulations of

BNS merger (2 x $1.4M_{\odot}$)

Credit: Price&Rosswog 2006

e.g. Rosswog 15, Bauswein's talk

Final stage of a binary NS (BNS) system evolution:

- double BNS systems do exist
- inspiral phase, driven by GW emission
- coalescence phase
- NS merger aftermath

- Hyper Massive NS (\rightarrow BH) $\sim 2.6 M_{\odot}, \rho \gtrsim 10^{12} {\rm g \, cm^{-3}}$
- thick accreting disk $\sim 0.15 M_{\odot}, Y_e \lesssim 0.05$
- intense u emission $L_{\nu, {
 m tot}} \sim 10^{53} {
 m erg \, s^{-1}}$

Nuclear & Astro relevance

dynamical encounter of neutron-rich, stellar compact object

- intense emitter of gravitational waves and neutrinos e.g. Read+13
- ejecta and heavy elements nucleosynthesis Lattimer&Schramm74
- significant dependence on nuclear EoS properties e.g. Bauswein+14

www.ligo.caltech.edu

- possible short gamma-ray burst progenitors e.g. Paczynski86
- electromagnetic counterpart from ejecta radioactive decay
 Li&Paczynski98
- ejecta properties depends on ν-matter
 interaction
 e.g. Wanajo+14

Aloy+05

ν-matter interaction in CCSN and BNS mergers - NAVI meeting @ GSI, Darmstadt, 26 February 2015 - p. 14/48

Nuclear & Astro relevance

dynamical encounter of neutron-rich, stellar compact object

Rosswog 12

- intense emitter of gravitational waves and neutrinos
 e.g. Read+13
- ejecta and heavy elements nucleosynthesis Lattimer&Schramm74
- significant dependence on nuclear EoS properties e.g. Bauswein+14

- possible short gamma-ray burst progenitors e.g. Paczynski86
- electromagnetic counterpart from ejecta radioactive decay
 Li&Paczynski98
- ejecta properties depends on ν-matter
 interaction
 e.g. Wanajo+14

 ν -matter interaction in CCSN and BNS mergers - NAVI meeting @ GSI, Darmstadt, 26 February 2015 – p. 14/48

Nuclear & Astro relevance

dynamical encounter of neutron-rich, stellar compact object

- intense emitter of gravitational waves and neutrinos e.g. Read+13
- ejecta and heavy elements nucleosynthesis Lattimer&Schramm74
- **EoS** properties e.g. Bauswein+14

possible short gamma-ray burst progenitors e.g. Paczynski86

- electromagnetic counterpart from ejecta radioactive decay Li&Paczynski98
- significant dependence on nuclear \checkmark ejecta properties depends on ν -matter interaction e.g. Wanajo+14

Rosswog 12

ν -matter interaction in CCSN and BNS mergers - NAVI meeting @ GSI, Darmstadt, 26 February 2015 – p. 14/48

Neutrino-driven wind

Physical origin of the ν -driven wind:

- $HMNS (\rightarrow BH)$
 - $\sim 2.60 M_{\odot}$
- thick accreting disk $\sim 0.17 M_{\odot}, Y_e \lesssim 0.05$

- intense neutrino (ν) emission $L_{\nu, \text{tot}} \sim 10^{53} \text{erg s}^{-1}$
- ν -disk interaction: wind formation

Goals of this study

- to characterize the neutrino emission
- to study the wind development
- to analyze the ejecta and to perform nucleosynthesis calculations
 Martin's talk
- to compute electromagnetic counterparts

see also Dessart+09,Metzger&Fernandez14,Just+14,Sekiguchi+15

what's new/different:

- first wind study in 3D
- disc and wind evolution over a few 100 ms
- high spatial resolution in the wind

Perego et al, MNRAS 2014; Martin et al, in preparation

v-matter interaction in CCSN and BNS mergers - NAVI meeting @ GSI, Darmstadt, 26 February 2015 - p. 17/48

Wind ejecta

ejected mass: cumulative histogram

Preliminary, courtesy of D. Martin

Nucleosynthesis from the wind

Postprocessing of ejected tracers:

- Winnet nuclear network
- weak r-process
- complementary to robust r-process nucleosynthesis from dynamical ejecta
- possible differences between high and low latitude ejecta

our wind ejecta + dynamical ejecta $(m_{\rm dyn}\approx 10^{-2}M_{\odot})~{\rm from~Korobkin+12}$

Preliminary, courtesy of D. Martin

Electromagnetic transient

1

time [d]

-8

0.1

- photon emission powered by radioactive material in the wind
- different from emission coming from dynamical and viscous ejecta
 - earlier and bluer
 - less contaminated by lanthanides and actinides
- possible dependence from viewing angle

Conclusions

ν -driven CCSNe

- PUSH, effective and efficient 1D, ν-driven explosion models
- calibrated with SN1987A
- function of spectral ν -transport
- suitable to study explosion properties and nucleosynthesis

binary NS merger aftermath

- genuine ν -driven wind from ν heating in the disk
- wind contributes substantially to BNS merger ejecta
- weak r-process nucleosynthesis
- wind electromagnetic transient

u-matter interaction in CCSN and BNS mergers - NAVI meeting @ GSI, Darmstadt, 26 February 2015 – p. 22/48

PUSH: the basic idea

Basic PUSH's idea:

To tap a fraction of the $\nu_{\mu,\tau}$ luminosity inside the gain region to enhance neutrino absorption

$$\dot{E}_{\rm push}^{+}(t,r) \propto \left(\int_{0}^{+\infty} \sigma_0 \left(\frac{E}{m_{\rm e}c^2} \right)^2 \left(\frac{1}{4\pi r^2} \frac{\mathrm{d}L_{\nu_{\mu,\tau}}}{\mathrm{d}E} \right) \mathcal{F}(t,r,E) \,\mathrm{d}E \right) \mathcal{G}(t)$$

- typical neutrino cross section
- space location function
 - outside the ν_e neutrinosphere

 - ds/dr < 0 (convection)

 $t_{\rm on} = 80 \,\mathrm{ms}$ $t_{\rm off} = 1 \,\mathrm{sec} \gg t_{\rm expl}$ $k_{\rm push} \sim 1$

spectral $\nu_{\mu,\tau}$ energy flux

temporal function

 $50\,\mathrm{ms} \lesssim t_{\mathrm{rise}} \lesssim 250\,\mathrm{ms}$

Implementation & Strategy

Hydro: AGILE (spherically symmetric, GR Lagrangian) Liebendörfer+02 $\nu_e, \bar{\nu}_e$ transport: IDSA Liebendörfer+09 (with mean-field interaction effects) Reddy+98,Roberts+12,Martinez-Pinedo+12,Hempel 14 $\nu_{\mu,\tau}$ treatment: ASL Perego+2014 NSE EOS: HS EOS, with DD2 parametrization Hempel & Schaffner-Bielich 10, Fischer+14 non-NSE EOS: ideal gas (25 nuclei, e^{\pm} , γ) calibration of PUSH using SN1987A observables Strategy: exploration of 16 progenitors (18-21 M_{\odot}), at solar metallicity WHW 02 $\xi_{1.75} = \frac{1.75}{R(1.75M_{\odot})/1000\,\mathrm{km}}$ O'Connor & Ott 11 $(1.1 \pm 0.3) \times 10^{51} \text{ erg}$ E_{expl} X onset of collapse + bounce 1.0 $18 - 21 M_{\odot}$ Mnna HC 0.8

=== prog	
$m(\ ^{56}{ m Ni})$	$(0.071 \pm 0.003) M_{\odot}$
$m(\ ^{57}{ m Ni})$	$(0.0041 \pm 0.0018) M_{\odot}$
m(⁵⁸ Ni $)$	$0.006 M_{\odot}$
$m($ 44 Ti $)$	$(0.55 \pm 0.17) \times 10^{-5} M_{\odot}$

Blinnikov+00,Seitenzahl+14,Fransson & Kozma 02

 M_{ZAMS} [M_o] ν -matter interaction in CCSN and BNS mergers - NAVI meeting @ GSI, Darmstadt, 26 February 2015 – p. 24/48

Previous models

Large variety of triggered explosions in 1D models:

- piston
- therma bomb
- light-bulb method (LBM)
- core-contraction method (CCM)
- **modified** ν -transport (M ν T)

e.g. Woosley & Weaver 95, Limongi & Chieffi 13

e.g. Umeda & Nomoto 08

e.g. Yamamoto+13

Ugliano+12

e.g. Frölich+06, Fischer+10

	Piston	Bombs	LBM	${\sf M} u{\sf T}$	ССМ	PUSH
u-driven explosion	X	Х	\checkmark	\checkmark	\checkmark	\checkmark
E and lepton number conservation	X	X	Х	\checkmark	\checkmark	\checkmark
PNS self-consistent evolution	X	Х	Х	\checkmark	Х	\checkmark
tunable explosion observables	\checkmark	\checkmark	\checkmark	Х	\checkmark	\checkmark
$ u_e, ar{ u}_e$ spectral transport	X	X	Х	\checkmark	Х	\checkmark
Preserve ν CC reactions	X	Х	\checkmark	Х	\checkmark	\checkmark
nucleon mean field interaction	X	Х	Х	Х	Х	\checkmark

Correlations

Free parameter analysis

Model ingredients

	initial conditions: • final stage of 1.4-1.4 M_{\odot} no-spin N • high resolution Newtonian SPH sin including ν cooling and nuclear Eo	IS merger nulation, S Rosswog&Price 06
	Hydrodynamics: FISH 3D Newtonian Cartesian code	Käppeli+11
	ν treatment: ASL scheme	Perego+14
_	Nuclear equation of state: HS EoS, with TM1 parametrization	Hempel & Schaffner-Bielich 12

BNS mergers (together with BH-NS mergers) are ...

- primary target of ground based GW detectors
 - aLIGO (next year!), VIRGO

constraint on nuclear EoS

 calculation of GW signal from inspiral/merger/post-merger phases

e.g. Acernese+08, Abbott+09

e.g. Read+13

e.g. Bauswein+14

www.ligo.caltech.edu

- promising progenitors of short/hard GRBs
 - compatibility with observation constraints
 e.g. Berger 14
 - mass accretion on BH/NS: large energy reservoir
 - ν 's and *B* field: intense energy deposition rates

Aloy+05

site for heavy-elements (r-process) production

Lattimer&Schramm 74, Eichler+ 89

- n-rich matter + $L_{\bar{\nu}_{e}} > L_{\nu_{e}}$ + fast expansions
- different ejection channels:

dynamical ejecta viscous ejecta

e.g., Korobkin+12, Bauswein+13, Hotokezaka+13

e.g., Fernandez&Metzger 13, Just+14

 ν -driven wind

e.g. Dessart+09, Metzger&Fernandez 14, Perego+14, Just+14

Rosswog2012 ν-matter interaction in CCSN and BNS mergers - NAVI meeting @ GSI, Damstad, 26 February 2015 – p. 31/48

e.m. counterparts associated with short GRBs

- radioactively-powered transient
 e.g. Li&Paczynski98
- first kilo/macro-nova observation, associated with GRB130603B

Metzger&Berger 12

Tanvir+13, Berger+13

disk lifetime:

$$t_{\rm disk} \sim \alpha^{-1} \left(\frac{H}{R}\right)^{-2} \Omega_K^{-1} \sim 0.31 \, {\rm s} \left(\frac{\alpha}{0.05}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{-2} \left(\frac{R_{\rm disk}}{100 \, {\rm km}}\right)^{3/2} \left(\frac{M_{\rm ns}}{2.5 \, M_{\odot}}\right)^{-1/2} \, {\rm s} \left(\frac{M_{\rm rs}}{100 \, {\rm km}}\right)^{-1/2} \, {\rm s} \left(\frac{M_{\rm rs}}{1$$

 α : viscosity coefficient R_{disk} : disk typical radius H/R: disk aspect ratio Ω_K : Keplerian angular velocity M_{ns} : HMNS mass

• disk lifetime: $t_{\text{disk}} \sim 0.31 \,\text{s} \, \left(\frac{\alpha}{0.05}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{-2} \left(\frac{R_{\text{disk}}}{100 \,\text{km}}\right)^{3/2} \left(\frac{M_{\text{ns}}}{2.5 \, M_{\odot}}\right)^{-1/2}$ • disk L:

$$L_{\nu,\text{disk}} \sim \frac{\Delta E_{\text{grav}}}{2 t_{\text{disk}}} \approx 8.35 \times 10^{52} \,\text{erg}\,\text{s}^{-1} \left(\frac{M_{\text{ns}}}{2.5 \,M_{\odot}}\right)^{3/2} \left(\frac{M_{\text{disk}}}{0.2 \,M_{\odot}}\right) \left(\frac{R_{\text{disk}}}{100 \,\text{km}}\right)^{-3/2} \\ \times \left(\frac{\alpha}{0.05}\right) \left(\frac{R_{\text{ns}}}{25 \,\text{km}}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{2}$$

 $\Delta E_{\rm grav}$: gravitational energy released during accretion

HMNS L:

$$L_{\nu,\rm ns} \sim \frac{\Delta E_{\rm ns}}{t_{\rm cool,ns}} \approx 1.86 \times 10^{52} \,\rm erg \, s^{-1} \left(\frac{\Delta E_{\rm ns}}{3.5 \times 10^{52} \,\rm erg}\right) \left(\frac{R_{\rm ns}}{25 \,\rm km}\right)^{-2} \\ \left(\frac{\rho_{\rm ns}}{10^{14} \,\rm g cm^{-3}}\right)^{-1} \left(\frac{k_{\rm B} T_{\rm ns}}{15 \,\rm MeV}\right)^{-2}$$

 $\Delta E_{\rm ns}$: thermal energy $t_{\rm ns,cool} \sim 3\tau_{\nu,\rm ns}/(R_{\rm ns}c)$: diffusion time scale $\tau_{\nu,\rm ns}$: ν optical depth in HMNS

- disk lifetime: $t_{\text{disk}} \sim 0.31 \,\mathrm{s} \, \left(\frac{\alpha}{0.05}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{-2} \left(\frac{R_{\text{disk}}}{100 \,\mathrm{km}}\right)^{3/2} \left(\frac{M_{\text{ns}}}{2.5 \,M_{\odot}}\right)^{-1/2}$ • disk L: $L_{\nu,\text{disk}} \sim 8.35 \times 10^{52} \,\mathrm{erg \, s^{-1}} \left(\frac{M_{\text{ns}}}{2.5 \,M_{\odot}}\right)^{3/2} \left(\frac{M_{\text{disk}}}{0.2 \,M_{\odot}}\right) \dots$
- HMNS L: $L_{\nu,\rm ns} \sim 1.86 \times 10^{52} \,{\rm erg \, s^{-1}} \left(\frac{\Delta E_{\rm ns}}{3.5 \times 10^{52} \,{\rm erg}}\right) \left(\frac{R_{\rm ns}}{25 \,{\rm km}}\right)^{-2} \dots$
- wind time:

$$t_{\rm wind} \sim \frac{e_{\rm grav}}{\dot{e}_{\rm heat}} \approx 0.072 \,\mathrm{s} \, \left(\frac{M_{\rm ns}}{2.5 \, M_{\odot}}\right) \left(\frac{R_{\rm disk}}{100 \,\mathrm{km}}\right) \left(\frac{E_{\nu}}{15 \,\mathrm{MeV}}\right)^{-2} \\ \left(\frac{\xi L_{\nu_e}}{4.5 \times 10^{52} \,\mathrm{erg \, s^{-1}}}\right)^{-1}$$

- e_{grav} : specific gravitational energy
- \dot{e}_{heat} : specific heating rate

 ξL_{ν_e} : isotropized ν_e luminosity at $\theta \approx \pi/4$, $\xi \sim 1.5$ and $L_{\nu_e} \sim (L_{\rm ns} + L_{\rm disk})/3$

- disk lifetime: $t_{\text{disk}} \sim 0.31 \,\mathrm{s} \, \left(\frac{\alpha}{0.05}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{-2} \left(\frac{R_{\text{disk}}}{100 \,\mathrm{km}}\right)^{3/2} \left(\frac{M_{\text{ns}}}{2.5 \,M_{\odot}}\right)^{-1/2}$ • disk L: $L_{\nu,\text{disk}} \sim 8.35 \times 10^{52} \,\mathrm{erg \, s^{-1}} \left(\frac{M_{\text{ns}}}{2.5 \,M_{\odot}}\right)^{3/2} \left(\frac{M_{\text{disk}}}{0.2 \,M_{\odot}}\right) \dots$
- HMNS L: $L_{\nu,\rm ns} \sim 1.86 \times 10^{52} \,{\rm erg \, s^{-1}} \left(\frac{\Delta E_{\rm ns}}{3.5 \times 10^{52} \,{\rm erg}} \right) \left(\frac{R_{\rm ns}}{25 \,{\rm km}} \right)^{-2} \dots$

• wind:
$$t_{\text{wind}} \sim 0.072 \,\mathrm{s} \left(\frac{M_{\text{ns}}}{2.5M_{\odot}}\right) \left(\frac{R_{\text{disk}}}{100 \,\mathrm{km}}\right) \left(\frac{E_{\nu}}{15 \,\mathrm{MeV}}\right)^{-2} \left(\frac{\xi L_{\nu e}}{4.5 \times 10^{52} \,\mathrm{erg \, s^{-1}}}\right)^{-1}$$

 $t_{\rm wind} < t_{\rm disk}$

disk lifetime:
$$t_{\text{disk}} \sim 0.31 \, \text{s} \left(\frac{\alpha}{0.05}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{-2} \left(\frac{R_{\text{disk}}}{100 \, \text{km}}\right)^{3/2} \left(\frac{M_{\text{ns}}}{2.5 \, M_{\odot}}\right)^{-1/2}$$
disk L: $L_{\nu,\text{disk}} \sim 8.35 \times 10^{52} \, \text{erg s}^{-1} \left(\frac{M_{\text{ns}}}{2.5 \, M_{\odot}}\right)^{3/2} \left(\frac{M_{\text{disk}}}{0.2 \, M_{\odot}}\right) \dots$
HMNS L: $L_{\nu,\text{ns}} \sim 1.86 \times 10^{52} \, \text{erg s}^{-1} \left(\frac{\Delta E_{\text{ns}}}{3.5 \times 10^{52} \, \text{erg}}\right) \left(\frac{R_{\text{ns}}}{25 \, \text{km}}\right)^{-2} \dots$

• wind:
$$t_{\text{wind}} \sim 0.072 \,\mathrm{s} \left(\frac{M_{\text{ns}}}{2.5 M_{\odot}}\right) \left(\frac{R_{\text{disk}}}{100 \,\mathrm{km}}\right) \left(\frac{E_{\nu}}{15 \,\mathrm{MeV}}\right)^{-2} \left(\frac{\xi L_{\nu e}}{4.5 \times 10^{52} \,\mathrm{erg \, s^{-1}}}\right)^{-1}$$

 $t_{\rm wind} < t_{\rm disk}$

• HMNS \rightarrow BH: EoS, M_{ns} , B_{ns} , ang. mom. transport, etc.

 $t_{\rm bh} \sim 0.01 - 10\,{\rm s}$

our assumption: $t_{\rm bh} \gtrsim 0.1 - 0.2 \, {\rm s}$

ASL: overview

based on previous grey leakage schemes

(Ruffert et al. 1997, Rosswog & Liebendörfer 2003)

- **spectral scheme (12 bins,** $2 200 \,\mathrm{MeV}$)
- **9** 3 flavors: $\nu_e, \bar{\nu}_e, \nu_{\mu,\tau}$ ($\nu_{\mu,\tau} \equiv \nu_{\mu}, \nu_{\tau}, \bar{\nu}_{\mu}, \bar{\nu}_{\tau}$)
- ν reactions: ($\nu \equiv \nu_e, \nu_\mu, \nu_\tau, \bar{\nu}_e, \bar{\nu}_\mu, \bar{\nu}_\tau$)

$e^- + p \rightarrow n + \nu_e$	O,T,P	$(A,Z) + \nu \to (A,Z) + \nu$	0
$e^+ + n \to p + \bar{\nu}_e$	O,T,P	$e^+ + e^- \rightarrow \nu + \bar{\nu}$	T,P
$e^- + (A, Z) \rightarrow \nu_e + (A, Z - 1)$	T,P	$N + N \to N + N + \nu + \bar{\nu}$	T,P
$N + \nu \rightarrow N + \nu$	0		

major roles: $O \rightarrow$ opacity, $T \rightarrow$ thermalization, $P \rightarrow$ production

Bruenn 1985, Mezzacappa & Bruenn 1993, Hannestad & Raffelt 1998

treatment developed and tested in Core Collapse Supernova context

ν optical depth

optical depth: average number of interactions for a ν , before leaving the system

$$\tau_{\nu} = \int_{\gamma} \frac{1}{\lambda} \,\mathrm{d}s \qquad \lambda = \frac{1}{n_{\mathrm{target}} \sigma_{\nu-\mathrm{target}}} \propto E_{\nu}^2$$

- **scattering optical depth**, $\tau_{\nu,s}$:
 - $\lambda_s^{-1} = \lambda_{scat}^{-1} + \lambda_{abs}^{-1}$ (all possible reactions)
 - $\tau_{\nu,s} \gg 1$: diffusive regime
- energy optical depths, $\tau_{\nu,e}$:

•
$$\lambda_{e}^{-1} = \sqrt{\left(\lambda_{scat}^{-1} + \lambda_{abs}^{-1}\right)\lambda_{abs}^{-1}}$$
 (geometrical mean)

- $au_{
 u,\mathrm{e}} \leq au_{
 u,s}$
- $\tau_{\nu,e} \gg 1$: diffusive regime & thermal equilibrium

ASL: basics

- effective scheme: ASL mimics known solutions of radiative transfert
- cooling part:
 - smooth interpolation between diffusion and production (spectral) rates
 - reproduction of the correct limits: diffusive ($\tau_{\nu} \gg 1$) and free streaming ($\tau_{\nu} \lesssim 1$)

($au_{
u}$ neutrino optical depth)

- heating part (for $\tau_{\nu} \lesssim 1$):
 - n_{ν} (neutrino density) calculated by ray-tracing algorithm; input: emission rates at ν -surfaces
 - $r_{\text{heat}} \propto \chi_{ab} \cdot n_{\nu}$ (χ_{ab} absorptivity)

Initial conditions

- 3D SPH data mapped on 3D FISH grid
- I km resolution: HMNS treated as stationary object
- data relaxation: $\Delta t \approx 10 \text{ms}$, hydro + ν emission

Neutrino Surfaces

v-matter interaction in CCSN and BNS mergers - NAVI meeting @ GSI, Darmstadt, 26 February 2015 - p. 38/48

dependence on time

dependence on time

dependence on time

Neutrino net rates

v-matter interaction in CCSN and BNS mergers - NAVI meeting @ GSI, Darmstadt, 26 February 2015 - p. 40/48

Picture I left: matter density right: projected velocity Picture II left: electron fraction right: entropy

Click here for the video

Wind properties

- **9** 2D mass-histograms of (ρ, Y_e) and (ρ, s)
- large variation for Y_e : $0.1 \leq Y_e \leq 0.40$
- small variation in entropy: $10 \leq s \; [k_B/bar] \leq 22$

Click here for the video

Disc & wind composition

mass fractions in the disk & wind (as predicted by NSE EOS)

black line: NSE freeze-out (T=5GK)

- Relevant changes in nuclear composition:
 - ${\sf n,p}
 ightarrow {\sf n,}lpha$ (still within NSE)
 - $n, \alpha \rightarrow n, (A, Z)$ (at NSE-freezout)

Wind ejecta

- Criteria: I) $e_{\text{tot}} = e_{\text{kin}} + e_{\text{th}} + e_{\text{pot}} > 0$ & II) $v_r > 0$ & III) $\theta < 60^o$
 - nuclear recombination energy included

high latitudes ($0^{\circ} < \theta < 45^{\circ}$)

- $0.3 \lesssim Y_e \lesssim 0.4$ s: 15-20 $k_{\rm B}$ /baryon, v_r : 0.08-0.09 c
 - more genuine ν -driven wind

low latitudes ($45^{\circ} < \theta < 60^{\circ}$)

- $m_{\rm ej}(t = 91 \,{\rm ms}) \approx 0.42 \times 10^{-3} M_{\odot}$ $m_{\rm ej}(t = 190 \,{\rm ms}) \approx 4.6 \times 10^{-3} M_{\odot}$
- $0.2 \lesssim Y_e \lesssim 0.3$ s: 14-15 $k_{\rm B}$ /baryon, v_r : 0.06-0.07 c
 - ν -driven wind + viscous ejecta

Nucleosyntheis from wind

Selected angular sections

Integrated nucleosynthesis @ 190ms

Integrated Nucleosynthesis Yields

Martin+, in preparation

e.g. Winteler+2012

- tracers post-processed with WinNet
- no robust r-process, but weak r-process
 - possible differences between high and low latitude ejecta

ν-matter interaction in CCSN and BNS mergers - NAVI meeting @ GSI, Darmstadt, 26 February 2015 - p. 45/48

Dynamical + wind nucleosyntheis

Combination of dynamical and wind nucleosynthesis (missing viscous component)

 $m_{\rm dyn} \approx 10^{-2} M_{\odot}$

Korobkin+12

e.m. transient: the model

- L_{γ} powered by radioactive material in the wind
- spherically symmetric model with $m_{\rm ej} \approx 2 \times 10^{-3} M_{\odot}$, $v_{\rm ej} \approx 0.08 \, c$

Kulkarni 05, see also Tanaka&Hotokezaka 13, Grossmann+14

- 10 representative tracers
- high (H) and low (L) latitudes tracers
- uniform grey opacity: $\kappa_H = 1 \text{ cm}^2 \text{ g}^{-1}$, $\kappa_L = 10 \text{ cm}^2 \text{ g}^{-1}$

Tracer	Y_e	s $[\rm k_B/baryon]$	$\langle A \rangle_{\rm final}$	$\langle Z \rangle_{\rm final}$	$X_{\mathrm{La,Ac}}$
L1	0.213	12.46	118.0	46.2	0.04
L2	0.232	11.84	107.1	42.5	0.009
L3	0.253	12.68	98.0	39.2	$7 \cdot 10^{-5}$
L4	0.275	12.73	90.2	36.4	$1 \cdot 10^{-7}$
L5	0.315	13.68	81.7	33.0	$3 \cdot 10^{-12}$
H1	0.273	13.57	93.0	37.4	$8 \cdot 10^{-7}$
H2	0.308	14.69	83.3	33.7	$6 \cdot 10^{-11}$
H3	0.338	15.36	79.4	32.1	$< 10^{-12}$
H4	0.353	16.40	78.4	31.7	$< 10^{-12}$
H5	0.373	18.35	76.8	31.0	$< 10^{-12}$

 computation of bolometric luminosities and broadband lightcurves

e.m. transient: the results

bolometric luminosities

e.m. transient: the results

broadband lightcurves

top/on-axis view

side/off-axis view