TECHNISCHE UNIVERSITA'T DARMSTADT

Convergence analysis

 and

- Astrophysical models require as an input thousands of nuclear masses \rightarrow beyond experimental reach
most relevant input are the extracted
\rightarrow neutron-separation energies $\mathbf{S}_{\mathbf{n}}$
\rightarrow beta-decay energies $\mathbf{Q}_{\boldsymbol{\beta}}$
which determine thresholds of all nuclear reactions

- Astrophysical models require as an input thousands of nuclear masses beyond experimental reach
- Need accurate predictions from theoretical global mass models \rightarrow
\rightarrow Modern mass market:

Finite Range Droplet Model (FRDM)

$$
\mathrm{rms}=0.57 \mathrm{MeV}
$$

Extended Thomas-Fermi

+ Strutinsky Integral (ETFSI)
0.69 MeV

Duflo-Zuker (DZ)
0.36 MeV

Weizsäcker-Skyrme (WS)
0.298 MeV

Hartree-Fock-Bogolyubov (HFB)
(Skyrme) 0.51 MeV
(Gogny) 0.798 MeV

- Astrophysical models require as an input thousands of nuclear masses beyond experimental reach
- Need accurate predictions from theoretical global mass models
- All models have similar rms, but more fundamental HFB models \rightarrow should provide greater confidence in describing unknown isotopes

Modern mass market:

Finite Range Droplet Model (FRDM) rms $=0.57 \mathrm{MeV}$
Extended Thomas-Fermi

more microscopic

+ Strutinsky Integral (ETFSI)
0.69 MeV

Duflo-Zuker (DZ)
0.36 MeV

Weizsäcker-Skyrme (WS)
0.298 MeV

Hartree-Fock-Bogolyubov (HFB)
(Skyrme) 0.51 MeV
(Gogny) 0.798 MeV
self-consistent mean field models based on Energy Density Functionals:

- Skyrme HFB-* (Goriely S. et al., PRC88, 2013)
- Gogny D1S/D1M (Goriely s. et al., PRL102, 2009)
- UNEDF (Erler J. et al., Nature 486, 2012)
- Astrophysical models require as an input thousands of nuclear masses beyond experimental reach
- Need accurate predictions from theoretical global mass models
- All models have similar rms, but more fundamental HFB models should provide greater confidence in describing unknown isotopes
- Still some problems with HFB models:
I) Issue of convergence due to truncated model space
II) Missing some physics without Beyond-Mean-Field correlations
III) Odd-mass nuclei are not
treated on the same footing

- Astrophysical models require as an input thousands of nuclear masses beyond experimental reach
- Need accurate predictions from theoretical global mass models
- All models have similar rms, but more fundamental HFB models should provide greater confidence in describing unknown isotopes
- Still some problems with HFB models:
I) Issue of convergence due to truncated model space
II) Missing some physics without Beyond-Mean-Field correlations
III) Odd-mass nuclei are not
treated on the same footing

- Astrophysical models require as an input thousands of nuclear masses beyond experimental reach
- Need accurate predictions from theoretical global mass models
- All models have similar rms, but more fundamental HFB models should provide greater confidence in describing unknown isotopes
- Still some problems with HFB models:
I) Issue of convergence due to truncated model space
II) Missing some physics without Beyond-Mean-Field correlations
III) Odd-mass nuclei are not treated on the same footing

Convergence of masses and IR-Extrapolation to infinite basis

Convergence in finite oscillator space

- Calculations are usually performed in finite spherical harmonic oscillator (SHO) basis with two parameters that define it:
$N_{O S}$ - number of major oscillator shells
b - length of SHO wavefunctions

Convergence in finite oscillator space

- Calculations are usually performed in finite spherical harmonic oscillator (SHO) basis with two parameters that define it:
$N_{O S}$ - number of major oscillator shells
b - length of SHO wavefunctions

Convergence in finite oscillator space

- Calculations are usually performed in finite spherical harmonic oscillator (SHO) basis with two parameters that define it:
$N_{O S}$ - number of major oscillator shells
b - length of SHO wavefunctions

Convergence in finite oscillator space

- Calculations are usually performed in finite spherical harmonic oscillator (SHO) basis with two parameters that define it:
$N_{O S}$ - number of major oscillator shells
b - length of SHO wavefunctions

Convergence in finite oscillator space

- Calculations are usually performed in finite spherical harmonic oscillator (SHO) basis with two parameters that define it:
$N_{O S}$ - number of major oscillator shells
b - length of SHO wavefunctions

Convergence in finite oscillator space

- Calculations are usually performed in finite spherical harmonic oscillator (SHO) basis with two parameters that define it:
$N_{O S}$ - number of major oscillator shells
b - length of SHO wavefunctions

Convergence in finite oscillator space

- Calculations are usually performed in finite spherical harmonic oscillator (SHO) basis with two parameters that define it:
$N_{O S}$ - number of major oscillator shells
b - length of SHO wavefunctions

Convergence in finite oscillator space

- Calculations are usually performed in finite spherical harmonic oscillator (SHO) basis with two parameters that define it:
$N_{O S}$ - number of major oscillator shells
b - length of SHO wavefunctions

Convergence in finite oscillator space

- Calculations are usually performed in finite spherical harmonic oscillator (SHO) basis with two parameters that define it:
$N_{O S}$ - number of major oscillator shells
b - length of SHO wavefunctions

Convergence in finite oscillator space

- Calculations are usually performed in finite spherical harmonic oscillator (SHO) basis with two parameters that define it:
$N_{O S}$ - number of major oscillator shells
b - length of SHO wavefunctions
- Convergence is reached when calculated energy is independent of the parameters $N_{O S}$ and b

Convergence in finite oscillator space

- Calculations are usually performed in finite spherical harmonic oscillator (SHO) basis with two parameters that define it:
$N_{O S}$ - number of major oscillator shells
b - length of SHO wavefunctions
- Convergence is reached when calculated energy is independent of the parameters $N_{O S}$ and b
- Further away from stability \rightarrow
\rightarrow weaker binding \rightarrow diffuse spatial distribution \rightarrow \rightarrow results are NOT converged by a couple of MeV

Convergence in finite oscillator space

- Calculations are usually performed in finite spherical harmonic oscillator (SHO) basis with two parameters that define it:
$N_{O S}$ - number of major oscillator shells
b - length of SHO wavefunctions
- Convergence is reached when calculated energy is independent of the parameters $N_{O S}$ and b
- Further away from stability \rightarrow
\rightarrow weaker binding \rightarrow diffuse spatial distribution \rightarrow \rightarrow results are NOT converged by a couple of MeV
- Few extrapolations to infinite basis suggested, but all lack solid theoretical justification

Convergence in finite oscillator space

- Calculations are usually performed in finite spherical harmonic oscillator (SHO) basis with two parameters that define it:
$N_{O S}$ - number of major oscillator shells
b - length of SHO wavefunctions
- Convergence is reached when calculated energy is independent of the parameters $N_{O S}$ and b
- Further away from stability \rightarrow
\rightarrow weaker binding \rightarrow diffuse spatial distribution \rightarrow \rightarrow results are NOT converged by a couple of MeV
- Few extrapolations to infinite basis suggested, but all lack solid theoretical justification
- Recently new IR-extrapolation scheme with firm theoretical background developed

```
Furnstahl R.J., Hagen G., Papenbrock T., PRC86, O31301 (2012)
More S.N. et al., PRC87, O44326 (2013)
Furnstahl R.J., More S.N., Papenbrock T., PRC89, }044301\mathrm{ (2014) Furnstahl R.J. et al, arXiv:1408.0252 (2014)
```

However, have not yet been systematically tested on whole isotopic chains.

IR-Extrapolation to infinite basis

Phase space of the nucleus and the basis

IR-Extrapolation to infinite basis

 of the nucleus and the basis
$\Lambda_{U V} \sim \sqrt{N_{O S}} / b$

- Truncating working basis, we effectively impose
-> \mathbf{x} : a hard-wall $L_{\text {IR }}$ cutoff
-> p: analogous sharp $\Lambda_{U V}$ cutoff
- Full Convergence - when nucleus "fits" into SHO basis:

IR convergence:	Spacial extent of the nucleus	$r<L_{\mathrm{IR}}$
UV convergence:	Largest mom. scale of interaction	$\lambda<\Lambda_{\mathrm{UV}}$

UV converged for small b-values

IR-Extrapolation to infinite basis

- Truncating working basis, we effectively impose
-> \mathbf{x} : a hard-wall $L_{\text {IR }}$ cutoff
-> p: analogous sharp $\Lambda_{U V}$ cutoff
- IR-Extrapolation - binding energy correction in the limit of UV converged results! X IR convergence: Spacial extent of the nucleus $r<L_{\text {Gaussian }}$

UV convergence: Largest mom. scale of interaction $\lambda<\Lambda_{\text {UV }}$

$$
E_{\mathrm{HFB}}\left(L_{\mathrm{IR}}\right)=a_{0} e^{\left(-2 k_{\infty} L_{\mathrm{IR}}\right)}+E_{\infty}
$$

where a_{0}, k_{∞} and E_{∞} are fit constants, and

IR-Extrapolation to infinite basis

- IR-Extrapolation - binding energy correction
in the limit of UV converged results!
X IR convergence: Spacial extent of the nucleus $r<L_{\mathrm{IR}}$
UV convergence: Largest mom. scale of interaction $\lambda<\Lambda_{\mathrm{UV}}$

$$
E_{\mathrm{HFB}}\left(L_{\mathrm{IR}}\right)=a_{0} e^{\left(-2 k_{\infty} L_{\mathrm{IR}}\right)}+E_{\infty}
$$

where a_{0}, k_{∞} and E_{∞} are fit constants, and

IR-Extrapolation to infinite basis

IR-Extrapolation to infinite basis

\Longrightarrow Second-order IR-corrections

 for loosely bound nuclei?Preliminary checks unsatisfactory. Still not adapted for atomic nuclei.
\Longrightarrow At present we do not have a reliable and universal extrapolation method for binding energies to the limit of an infinite basis for HFB-based models!

Large-scale HFB calculation and Beyond-Mean-Field corrections

global mass surveys for axially deformed Mean Field HFB-D1S calculation for even-even nuclei

global mass surveys for axially deformed Mean Field HFB-D1S calculation for even-even nuclei

- Mean Field approach of HFB:
- no symmetry conservations
- no configuration mixing

- Mean Field approach of HFB:
- no symmetry conservations
- no configuration mixing

Digging Beyond the Mean Field

Symmetry restoration by

- Variation After Particle

Number Projection (PN-VAP):

$$
\Delta \mathrm{E}_{\mathrm{PN}-\mathrm{VAP}} \sim 2.3 \mathrm{MeV}
$$

- Particle Number and J = 0 Angular

Momentum Projection (PNAMP):
$\Delta \mathrm{E}_{\text {PNAMP }} \sim 2.7 \mathrm{MeV}$

- Mean Field approach of HFB:
- no symmetry conservations
- no configuration mixing

Digging Beyond the Mean Field

Symmetry restoration by

- Variation After Particle

Number Projection (PN-VAP):

$$
\Delta \mathrm{E}_{\mathrm{PN}-\mathrm{VAP}} \sim 2.3 \mathrm{MeV}
$$

- Particle Number and J = 0 Angular

Momentum Projection (PNAMP):
$\Delta \mathrm{E}_{\text {PNAMP }} \sim 2.7 \mathrm{MeV}$

- Configuration mixing by
- Exact implementation of

Generator Coordinate Method (GCM):

$$
\Delta \mathrm{E}_{\mathrm{GCM}} \sim 0.8 \mathrm{MeV}
$$

- Mean Field approach of HFB:

- no symmetry conservations
- no configuration mixing

Digging Beyond the Mean Field

Symmetry restoration by

- Variation After Particle

Number Projection (PN-VAP):

$$
\Delta \mathrm{E}_{\mathrm{PN}-\mathrm{VAP}} \sim 2.3 \mathrm{MeV}
$$

- Particle Number and J = 0 Angular

Momentum Projection (PNAMP):
$\Delta \mathrm{E}_{\text {PNAMP }} \sim 2.7 \mathrm{MeV}$

- Configuration mixing by
- Exact implementation of

Generator Coordinate Method (GCM):

$$
\Delta \mathrm{E}_{\mathrm{GCM}} \sim 0.8 \mathrm{MeV}
$$

Total Energy with BMF correlations

$$
\mathrm{E}_{\mathrm{GCM}}=\mathrm{E}_{\mathrm{HFB}}\left(\mathrm{~N}_{\mathrm{OS}}=19\right)-\Delta \mathrm{E}_{\mathrm{BMF}}
$$

where the BMF correlations are calculated as

$$
\Delta \mathrm{E}_{\mathrm{BMF}}=E_{\mathrm{HFB}}\left(N_{O S}=11\right)-E_{\mathrm{BMF}}\left(N_{O S}=11\right)
$$

because of heavy computational burden

$$
t_{\mathrm{BMF}}\left(N_{O S}=11\right) \approx 60 \mathrm{~h} \quad t_{\mathrm{BMF}}\left(N_{O S}=19\right)>1000 \mathrm{~h}
$$

- Similar behavior of $\Delta \mathrm{E}_{\text {BMF }}$-corrections for both Gogny functionals D1S and D1M with $\Delta \mathrm{E}_{\mathrm{BMF}} \sim 5.8 \mathrm{MeV}$
- Inverse parabolic $\Delta \mathrm{E}_{\mathrm{BMF}}$-corrections between shell closures tend to reduce the peaks at magic numbers slightly
- ... but strong Shell Effects are not washed out by BMF corrections
- Spread light nuclei $(\mathrm{N}=10-40)$ is significantly reduced when BMF correlations are taken into accout
- Overbinding for both D1S and D1M can be solved by re-fitting the EDF functional
- ... but it is still an open question whether re-fitting EDF functional with these and other BMF effects self-consistently can flatten the curves

- Experimental $S_{2 n}$ are much smoother than both HFB and GCM results:
- Convergence problem?
- Missing triaxiality, octupolarity, etc.?

- BMF corrections tend to reduce the exaggerated shell gaps of HFB

Number of protons

- Experimental $S_{2 n}$ are much smoother than both HFB and GCM results:
- Convergence problem?
- Missing triaxiality, octupolarity, etc.?
- BMF corrections tend to reduce the exaggerated shell gaps of HFB

Number of protons

- Experimental $S_{2 n}$ are much smoother than both HFB and GCM results:
- Convergence problem?
- Missing triaxiality, octupolarity, etc.?
- BMF corrections tend to reduce the exaggerated shell gaps of HFB

Number of protons

Number of protons

Number of protons

Summary and Outlook

Summary and Outlook

- Despite that this global BMF-calculation with much improved convergence and GCM treatment is still far from precision level of other sophisticated mass formulas, this is the right step towards the microscopic global nuclear structure model that is reliably applicable to neutron-rich r-process nuclei.
- Additional degrees of freedom (e.g. triaxiality, particle-vibration coupling, octupole deformations) must be included explicitly to improve description of both spectral and ground state energies.
- Further investigation of odd-nuclei approximation techniques, or implementation of explicit time-reversal breaking is needed.
- Particular attention must be paid to the convergence properties of the harmonic oscillator working basis.
- Finally, a significant improvement is to be made from a new EDF parametrization tuned to include the relevant BMF effects.

$\tau_{E N D}$

Additional Slides

Symmetry restoration by

- Variation After Particle

Number Projection (PN-VAP):

$$
\Delta \mathrm{E}_{\mathrm{PN}-\mathrm{VAP}} \sim 2.3 \mathrm{MeV}
$$

- Particle Number and Angular Momentum Projection (PNAMP):

$$
\Delta \mathrm{E}_{\text {PNAMP }} \sim 2.7 \mathrm{MeV}
$$

- Configuration mixing by
- Exact implementation of

Generator Coordinate Method (GCM):

$$
\Delta \mathrm{E}_{\mathrm{GCM}} \sim 0.8 \mathrm{MeV}
$$

Total Energy with BMF correlations

$$
\mathrm{E}=\mathrm{E}_{\mathrm{HFB}}\left(\mathrm{~N}_{\mathrm{OS}}=19\right)-\Delta \mathrm{E}_{\mathrm{BMF}}
$$

where the BMF correlations are calculated as

$$
\Delta \mathrm{E}_{\mathrm{BMF}}=E_{\mathrm{HFB}}\left(N_{O S}=11\right)-E_{\mathrm{BMF}}\left(N_{O S}=11\right)
$$

because

$$
t_{\mathrm{BMF}}\left(N_{O S}=11\right) \approx 60 \mathrm{~h} \quad t_{\mathrm{BMF}}\left(N_{O S}=19\right) \gg 1000 \mathrm{~h}
$$

- Astrophysical models require as an input thousands of nuclear masses beyond experimental reach
- Need accurate predictions from theoretical global mass models
- All models have similar rms, but more fundamental HFB models should provide greater confidence in describing unknown isotopes
- Still some problems with HFB models:
I) Lack of convergence due to truncated model space

II) Missing some physics without Beyond-Mean-Field correlations III) Odd-mass nuclei are not treated on the same footing

Outlook

- Construct a complete mass table by including odd-mass nuclei
- Explore more degrees of freedom
(triaxiality, particle-vibration coupling, octupole deformations, etc.)
- New energy density functional parametrization adjusted to the Beyond-Mean-Field effects

