Introduction

SM tools

Conclusions

NEW ADVANCES IN SHELL MODEL CALCULATIONS: APPLICATIONS AROUND ¹³²Sn

Houda NAÏDJA

IPHC Strasbourg, France GSI Darmstadt, Germany. LPMS, Université Constantine 1, Algérie.

NAVI Meeting, 26-27th February 2015

SM tools

Conclusions

Introduction

Taken from NNDC

Experimental interest

New results of ^{136,138}Sn obtained at RIKEN Nishina center.

PRL 113, 132502 (2014)

Introduction

0000

PHYSICAL REVIEW LETTERS

week ending 26 SEPTEMBER 2014

Yrast 6⁺ Seniority Isomers of ^{136,138}Sn

G. S. Simpson,^{1,2,3} G. Gey,^{3,4,5} A. Jungclaus,⁶ J. Taprogge,^{6,7,5} S. Nishimura,⁵ K. Sieja,⁸ P. Doornenbal,⁵ G. Lorusso,⁵ P.-A. Söderström,⁵ T. Sumikama,⁹ Z. Y. Xu,¹⁰ H. Baba,⁵ F. Browne,^{11,5} N. Fukuda,⁵ N. Inabe,⁵ T. Isobe,⁵ H. S. Jung,^{12,4} D. Kameda,⁵ G. D. Kim,¹³ Y.-K. Kim,^{13,14} I. Kojouharov,¹⁵ T. Kubo,⁵ N. Kurz,¹⁵ Y. K. Kwon,¹³ Z. Li,¹⁶ H. Sakurai,⁵¹⁰ H. Schaffner,¹⁵ Y. Shimizu,⁵ H. Suzuki,⁵ H. Takeda,⁵ Z. Vajta,^{17,5} H. Watanabe,⁵ J. Wu,^{16,5} A. Yagi,¹⁸ K. Yoshinaga,¹⁹ S. Bönig,²⁰ J.-M. Daugas,²¹ F. Drouet,³ R. Gernhäuser,²² S. Ilieva,²⁰ T. Kröll,²⁰ A. Montaner-Pizá,²³ K. Moschner,²⁴ D. Mücher,²² H. Naïdja,^{81,52,55} H. Nishibata,¹⁸ F. Nowacki,⁸ A. Odahara,¹⁸ R. Orlandi,^{36,4} K. Steiger,²² and A. Wendt²⁴

Introduction

SM tools

Conclusions

AND

Theoretical interest

G,¹³²Sn core, $\pi(gdsh) \otimes v(hfpi)$

CAL REVIEW C 76, 024313 (2007)

Effective interactions and shell model studies of heavy tin isotopes

M. P. Kartamyshev, T. Engeland, M. Hjorth-Jensen, and E. Osnes Department of Physics and Centre of Mathematics for Applications, University of Oslo, N-0316 Oslo, Norway (Department of Costsher 2005), which are applied at the application of OSI (Normal 2007).

PHYSICAL REVIEW C 81, 064328 (2010)

New shell closure for neutron-rich Sn isotopes

SMPN,¹³²Sn core, $\pi(gdsh) \otimes v(hfpi)$

S. Sarkar^{*} ing and Science University, Shibpur, Howrah 711103, India

M. Saha Sarkar

Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India

Shell-model study of exotic Sn isotopes with a realistic effective interaction

A Covello^{1,2}, L Coraggio², A Gargano² and N Itaco^{1,2} ¹Dipartimento di Scienze Fisiche, Università di Napoli Federico II, V_{low-k} , ¹³²Sn core, $\pi(gdsh) \otimes v(hfpi)$ te S. Angelo, I-80126 Napoli, Italy teare, $V_{low-k} \otimes V(hfpi)$ $V_{low-k} \otimes V(hfpi)$ V SM tools

Introduction

0000

Conclusions

Astrophysical interest

responsible of the synthesis of the heavy elements by r-process, and their nuclear model properties predictions give the inputs for r-process simulations.

Adapted from K.-L.Kratz

< ロ > < 四 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 1. Basic notions of the shell model calculations : valence space, effective interaction, and the numerical codes.
- 2. Calculation of low-lying state energies, transitions and masses in ^{134,136,138}Sn,
 - Effect of core excitations
 - Closure or no of the sub-shell at N=90
- 3. Other applications to the open n-p systems : Te, Xe, Ba, Ce, Nd.

Introduction

SM tools

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●

æ

7/12

Core and valence space

SM tools

Conclusions

Core and valence space

 \mathbb{I} 1 $h_{11/2}$ and 1 $g_{9/2}$ closed \equiv^{132} Sn core

If $h_{11/2}$ and $1g_{9/2}$ opened $≡^{110} Zr$ core

✓ Opening the ¹³²Sn core constitutes a numerical chalenge in the diagonalisation of the matrix.

↓ Diagonalization in **Antoine** * and **Nathan**[†] codes using Lanczos procedure, Exemple : ¹⁴⁰Sm : D=6 10⁹

(*)E.Caurier et al, Rev.Mod.Phys 77 (2007)427, and Antoine website (†)no public version

Conclusions

012

EFFECTIVE INTERACTION

REALISTIC

- 1. derived from realistic interaction :ArgonneV18, CD-Bonn,N3LO,...
- 2. renormalised by V_{low-k} or G matrix approach to exclude the repulsive part at short range.
- adapted to the model space by many body perturbation theory, using P and Q projection operators into model space and excluded space respectively

$$P = \sum_{i=1}^{d} |\Psi_i > < \Psi_i|, \ Q = \sum_{i=d}^{\infty} |\Psi_i > < \Psi_i|, \ P + Q = 1$$

$$V_{eff} = \underbrace{V + V \frac{Q}{E - H_0} V}_{second order} + V \frac{Q}{E - H_0} V \frac{Q}{E - H_0} V$$

$$V \rightarrow V_{low-k}$$

M. Hjorth-Jensen et al. Phys.Rep 261 (1995)125

Introduction

SM tools

Conclusions

Single particle energies

HYSICAL REVIEW C

VOLUME 59, NUMBER 5

KAPID COMMUNICATI

GEMO Model

The nuclear monopole Hamiltonian

J. Duflo¹ and A. P. Zuker²

¹Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (IN2P3-CNRS), F-91405 Orsay Campus, France ²IRES, Bâtiment 27, IN2P3-CNRS/Université Louis Pasteur BP 28, F-67037 Strasbourg Cedex 2, France (Received 15 December 1997; revised manuscript received 13 November 1998)

NNS110 interaction.

・ロ> < 昂 > < 臣 > < 臣 > 臣 2000 11/42

<ロト</th>
・<</th>
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

<ロト<部ト<差ト<差ト<差ト 13/Aの

seniority mixing

<ロ> < 四> < 四> < 回> < 回> < 回> < 回> < 回

Introduction	SM tools	Tins results	Other applications	Conc
0000	00000	000000000000000000000000000000000000000	000000	000

seniority mixing

□ > < @ > < ≧ > < ≧ > < ≧ > < ≧
 16/42

Introduction

SM tools

Conclusions

seniority mixing

PHYSICAL REVIEW C 70, 044314 (2004)

New T=1 effective interactions for the $f_{5/2} p_{3/2} p_{1/2} g_{9/2}$ model space: Implications for valence-mirror symmetry and seniority isomers

A. F. Lisetskiy,¹ B. A. Brown,¹ M. Horoi,² and H. Grawe³

 $6_2^+(v=4)$ is above the 8^+ $6_2^+(v=2 \text{ and } 4)$ is below the 8^+ Pushing down of the $6_2^+(v=4)$ state opens up a new channel for the fast E2 decay of the 8^+ state.

> <ロト<部ト<差ト<差ト<差ト 17/42

Reducing the pairing strength (NNS110P interaction), improves clearly the agreement with the data.

Introduction	SM tools	Tins results	Other applications	Conclusions
0000	00000	000000000000000000000000000000000000000	000000	00000

Masses

- Binding energies relative to ¹³²Sn
- 5 4500 NNS110 4000 0 /lowl 3500 Vlow 3E relative to32 Sn [MeV] -5 3000 -10 Sn[keV] 2500 -15 2000 1500 -20 1000 -25 500 -30 132 133 134 135 136 137 138 139 140 133 134 135 136 137 A А
 - $\checkmark\,$ Our masses are consistent with the data
 - ✓ The 2 body monopole corrections are believed to come from 3 body interaction not included in V_{low-k}

one neutron separation energy

Introduction

SM tools

Conclusions

sub-shell closure at N=90?

PHYSICAL REVIEW C 81, 064328 (2010)

New shell closure for neutron-rich Sn isotopes

S. Sarkar*

Department of Physics, Bengal Engineering and Science University, Shibpur, Howrah 711103, India

M. Saha Sarkar

Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India (Received 11 October 2009; revised manuscript received 11 June 2010; published 29 June 2010)

<ロ > < 昂 > < 臣 > < 臣 > 臣 21/42

Introduction

SM tools

Conclusions

Shell closure at N=90?

 Analogy between ²²O, ⁴⁸Ca, and ¹⁴⁰Sn in the closure of the (sub-)shell at N=14,28, and 90?

A.P.Zuker, PRL 90, 042502 (2003) T.Otsuka et al. PRL 105,032501 (2010)

the excited states are characterized by mixed configurations.

• the spacing $0^+ - 2^+$ remains nearly constant at around 700 keV, except for a small increase at 140 Sn owing to the filling of the $(f_{7/2})$. S.Sarkar and M.S.Sarkar Phys.Rev.C 81, 064328(2010)

 a sudden increase for N=90, indicating a closed-shell structure for ¹⁴⁰Sn.

2⁺ energy in ¹⁴⁰Sn in not higher than in the neighboring nuclei.

S.Sarkar and M.S.Sarkar Phys.Rev.C 81, 064328(2010)

 The gap vf_{7/2} and vp_{3/2} increases to 2.246 MeV
 ↓
 ¹⁴⁰Sn is doubly magic nucleus

• The gap between $v f_{7/2}$ and $v p_{3/2}$ remains constant

[↓] No sub-shell closure at N=90

Evolution of neutron ESPE

• Increasing the gap by changing the monopole part

5.5arkar and M.5.5arkar Phys.Rev.C 81, 064328(2010)

 The gap vf_{7/2} and vp_{3/2} increases to 2.246 MeV
 ↓
 ¹⁴⁰Sn is a doubly magic nucleus

・ロット (雪) (日) (日)

э

<ロト<部ト<至ト<至ト<三ト 27/42

Intr	odu	otion
mu	ouu	GUOII
~ ~	~ ~	
00	00	

SM tools

Tins results Other applications

OTHER APPLICATIONS TO THE OPEN N-P SYSTEMS

< D > < B > < E > < E > E 2

▲□▶▲圖▶▲臣▶▲臣▶ 臣 🍒

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

▲口》▲圖》▲理》▲理》 [注]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- The transitions are reporduced with no explicit adjustement of the effective charges.
- ✓ Transitions at N=82 are small for all the chain of nuclei ⇒ spherical character of GS.
- ✓ BE2 in ¹³⁶Te is close to that ¹³⁴Te \Rightarrow anomaly in ¹³⁶Te \Rightarrow \Rightarrow

duction	SM tools	Tins results	Other applications
0	00000	000000000000000000000000000000000000000	000000

Triaxiality

•
$$Q(2^+_{\gamma}) = -Q(2^+_{yrast}).$$

- the presence of $B(E2,2^+_\gamma
ightarrow 2^+_1)$ transition

•
$$Q(3^+) = 0.$$

• strong
$$B(E2,3^+ \rightarrow 2^+_2)$$
 transition

	¹³⁸ Te	¹⁴⁰ Xe	¹⁴² Ba	¹⁴⁴ Ce	¹⁴⁶ Nd
$Q(2_1^+)e.fm^2$	-45.67	-62.64	-70.74	-75.24	-61.76
$Q(2_{2}^{+})e.fm^{2}$	40.08	63.84	69.18	75.49	-60.92
$Q(3^{+})e.fm^{2}$	-0.34	-1.31	-0.62	-0.79	-0.10
$B(2^+_2 \rightarrow 2^+_1)e^2.fm^4$	43	155	180	210	294
$B(3^{+} \rightarrow 2^{+}_{2})e^{2}.fm^{4}$	745	1911	2054	2569	2153
$Q_i(Q_0)$	157	220	248	262	248
$Q_i(B(E2))$	160	225	252	268	255
β	0.1	0.14	0.15	0.15	0.14

CONCLUSIONS-PERSPECTIVES

- ✓ Using NNS110P interaction, the agreement between the experience and calculated energy levels is improved.
- ✓ The pairing force must be reduced to reproduce the experimental transition rates in ¹³⁶Sn, leading to mixing seniority.
- ✓ The core excitations seem to have a negligible effect to the tin isotopes energies, confirming the strong magicity of ¹³²Sn
- ✓ ¹⁴⁰Sn doesn't exhibit the features of a doubly magic nucleus.
- ✓ The applications to other nuclei allowed us to test our interaction to differents systems.

PROJECTS UNDER PROGRESS

- Triaxiality in ¹⁴⁰Sm : in collaboration with Andreas Görgen, University of Oslo.
- Isomer in ¹⁴⁰Sb : in collaboration with Radomira Lozeva ; IPHC Strasbourg
- High spin states in ¹³⁸Te and ¹⁴⁰Xe : in collaboration with W.Urban,
- ...

ntroduction	SM tools	Tins results	Other applications	C (
		140 cm		

- core : ¹⁰⁰Sn
- valence space : gdsh
- Interaction : GCN182[†]
- Dimension : 6.10^9 , $(n_v = 28, p_v = 12)$
- Low-lying state energies are in correct order
- Transitions are in good agreement with the data

work under progress in collaboration with Andreas Görgen and Malin Klintefjord, University of Oslo

† A.Gniady, E.Caurier and F.Nowacki (unpublished)

onclusions

† A.Gniady, E.Caurier and F.Nowacki (unpublished)

Calculations doing by Bounseng Bounthong, PHD Student

Intre	aduu	ation	
mui	Juu	JUOII	
	~ ~		
00	00		

SM tools

Tins results Other applications Conclusions 00000

BACKUP

Introduct	ion SM tool: 00000	Tins results	Other applic	ations Conclusions

SM NAPOLI GROUP RESULTS

The 2⁺ energy remains nearly constant.

The gap $v(f_{7/2} - p_{3/2})$ is nearly constant.

12/12

NO closure of the sub-shell at N=90.

A.Covello et al. Journal of Physics : Conference Series 267 (2011)012019.